Mon. [7.1.1-7.1.3 Ohm’s Law & Emf
Wed. [7.1.3-7.2.2 Emf & Induction
Fri., |7.2.3-7.2.5 Inductance and Energy of B

Mon., |7.3.1-.3.3 Maxwell’s Equations
Tues. HW10

Wed. |10.1-.2.1 Potential Formulation

But first: example with linear media



Linear Para/Dia-magnetic
free__‘.‘]freeda §H dl B ,LlO(H+M) M ZmH

Example/Exercise: A coaxial cable consists of a copper wire of radius a
surrounded by a concentric copper sheath of radius b. Copper has a
magnetic susceptibility x,, .,. The space between is filled with an insulating

material of susceptibility .. If a current / flows up the inner wire
(uniformly distributed across the wire’s cross-section) and down the outer
sheath,

a) find the Auxiliary field everywhere
b) Find the Magnetization everywhere
c) Find the Magnetic field everywhere

I’ll do for s<a (inside coper wire),
you’ll do b<s<a and s<b




The other magnetism

Fe: 1522522p3523p63d°4s? Ferromagnetism

The 3d level is actually higher energy than the on-average
larger 4s (which has 4 radial peaks, one closer to the nucleus
than the 3d’s inner radial peaks), so Iron and its neighbors
have filled 4s but only partially filled 3d which is too far in to
covalently bond but far enough out to overlap with
neighboring irons’ 3d’s and form a conduction band. So they
can share extended wave functions and long wavelength’s it’s

energetically favorable for electrons in this band to be spin-
aligned!

Full 4s

——

R¥(y)r?

R¥(y)r?
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(http://www.theeestory.com/topics/9807)
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Ohm’s Law — charged particles moving in a wire
The classical Drude model

Electron “gas”  Vierma VKT

Periodic collisions with lattice impurities and vibrations
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Ohm’s Law — the current density is proportional to the field J = O-conductivitvE



Ohm’s Law — charged particles moving in a wire
The classical Drude model

2
1 _ v q° leoisions |
'J - ncarriersqurift = (nmolecules 1:carriers/molecule om v E

thermal

— —

J = Jconductivity E

Ohm’s Law — the current density is proportional to the field

Or, if we integrate over the cross-section perpendicular to the current / field,

jj-da =ja E-da,

cond

| — (j’a da E is uniformly perpendicular to, and constant
cond over this area (otherwise, we’d have a curl)

u O-cond da ) . :

D C

Integrate anng path current follows.

| Uacondda le | Ed

Resistance

d| For steady current, it’s
= =——

o da constant over the path - - _[ ||
Gcondda

cond

IR =-AV (sign is usually neglected, but means ‘current flows down hill’)



Example: Pr. 7.4 Two long, coaxial metal cylinders separated by a
material with conductivity ofs) = k/s. What is the resistance, R?

Exercise: Alternatively, imagine charges Q and —Q
on the two surfaces, find E and a) corresponding J
and integrate for /, then b) corresponding A4V, then

take the ratio.
AV _—J‘E dl

| = (‘.Jcondda




Energy Dissipation

E
ﬁ \ Y | Energy transferred to differential bit of charges when

AV accelerated through a potential difference:
(dCI)AV :Wfield—>q :Wq—>wire _WW|re—>enV|ronment

But in steady-state, charges The wire warms up and, unless it
moving in a resistive material melts first (thus stopping the
have no average gain in energy current and the heating), it must
because they repeatedly collide shed the energy by heating the
with impurities and vibrations environment — conduction and

and transfer the energy to the radiation (as in an incandescent
é é (_&' atoms of the wire. lamp’s filament.)

- Rate at which energy is transferred :

p_W _94,y _jav
dt  dt

For “ohmic” materials (for which ohm’s law applies) |R = —-AV

2
Pl=1av = 17R — AY)




Example: Pr. 7.3 Two metal objects are embedded in a weakly
conducting material of constant conductance o, find the relationship
between this, R, and C.

A key point is that current is free to flow any direction out of one object to arrive at the other, so
when it comes to integrating J over an area, it’s over a closed area surrounding one of the

objects. _
— AV . C = _Q
R=—— while, AV
So, pc-—AV/1_Q __ &%
-AV/Q | O cond
now, - — =
§J daL — §Gcond E dal
| =0 E -da
cond Q ) And by Gauss’s Law,
| = Ocond
&



Emf (Electro-motive “force”)

Some process inside a battery causes charge separation across
terminals. The field of those charges drive the current
through a circuit.

A *mechanical battery”

+H+++

©
U

i+

v

++H+++

In equilibrium, ~ -

= = dp Fdrive—> =
—_"q9 _ — 4 _
|:drive—>q + quattery - dt =0 or Ebattery
Of course,
—.term —term _ Wd '
_ = . drlve—>q rive—q —
AVbattery - IEbattery - J- dl = W

+.term +.term q
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Real Chemical Battery

+

= N
Pb+HSO; — PbSO, +H* +2¢~ —
PbO, +HSO; +3H* +2e~ — PbSO, +2H,0

Net Effect

Pb+PbO, +2(2H" +S0% ) — 2PbSO, +2H,0



Real Chemical Battery

L

Pb+PbO, +2(2H" +50% ) — 2PbSO, +2H,0

Wchem—>q " "
C{AV :Wchem—>q = AV - q - W
Wchem—>q — _AGreaction

Difference in Gibbs Free Energy for
assembling products and reactants
(Phys 344)



Motional Emf

Move conducting bar across magnetic field
lv Mobile electrons move in response to magnetic force
Fmag = (—e)v x B
E Electron surplus accumulates at one end, deficiency at other
- elect
. %E Resulting electric field and force
i K - _
Fmag |:elect = (_ e)E
grows until
|:elect + |:mag = O

(ce)E +(-eWxB =0

E=vB
In terms of Voltage and Emf:
Emf,,, = AV
Emf,,, ZI 'Emag .dzz—ondeAv
q

Emf,,, = [~VBJ ody = —[ E ody = AV

&mf,,, =—VBL=—EL=AV



Motional Emf

' (R— _ — _Fl = AV=—
N PRI, Emf,,, =—VBL= EL=AV=-IR
X) X e, vBL
so | =2=
,,” % . R
Of course, now that we have éstablished another component of
charge motion, a current flowing there’s another component
“ o == of magnetic force,

Freg = [ 1dl x B = ~ILB&

D¢mo! - “eddy currents”
Example: If the bar has mass m and initial speed v,, what will it be atAime t?
dp

E - |:mag Show that eventually, all the initial kinetic energy of the bar
dv gets radiated away by the resistor
m_V:_@ LBX P=1I°R C 2B 2
d 2 mR (BL)
t R dE VBL 2 AE — jvoe Tdt
—— | ==|R
d_  ((BLY). dt ( R j ’ 2
dt’ | mR ) 2 _2((BLR) ]t
_t((BL)Z] AE=1mV°e '™/ -1
y (BL)ZJ dE _|ve ™ /BL A
i(t)=ve ' ™ dt R
vit)=v e
() 0 AE(t=o00)=-1my >



Motional Emf

Example 7.4 : Faraday Disk A metal disk of radius a rotates with an angular frequency o
(counterclockwise viewed from above) about an axis parallel to a uniform magnetic field. A
circuit is made by a sliding contact.

What is the current through the resistor R?

| -

—
oo/

—

AV = Emf
Emf = [ d1

q
(] ) Fragq = AV x B =q(as)B §
a a 2
R I W:IwB§-d§:ijst:mia
0 0
_ wBa’



Mty =

—BvL=-B

.Motional Emfand Magnetic Flux

dx

dt

dBa
dt

dBa B
dt

do,
dt

da, WiII prove generality soon

dt

Exercise: A square loop is cut out of a thick sheet of aluminum. It is placed so that the top
portion is in a uniform, horizontal magnetic field of 1 T into the page (as shown below) and

allowed to fall under gravity. The shading indicates the field region. What is the terminal

velocity of the loop?
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mag

_dp
dt

_|_

grav
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dv

|:mag
T —mg+1éB=m—
dt

:% dv
m

B*/*v
R

—mg +

22
B“/°V,,

—mg + =0

voE

grav

mg+fldfxl§:md—v

| AV]_ femp]
R R
Emf|=— =Blv
mgR
ter ::'E§7§Zﬁi



Generalization of Flux Rule

_______ S(t+dt) Using vector identity (1)

0a = vdt xal I A-(BxC)=(AxB)-C
B-dd =B (Vdtxdl ) = (B xvdt)-dl =—(vdtx &) dl

Thus change in magnetic flux through the loop

d, = —f (vt x B)-dl

rate of change in magnetic flux through the loop

= T IEma T
agf;— (FxB)-di =§ =
0Dq =—Emf
ot |,

Warning: our derivation used that the changing, da/dt, corresponded
to moving charge, vdl. Not applicable when that’s not the case.
— thar be “paradoxes”

(We will later extend this reasoning to discuss stationary charges but changing fields)



Mon. [7.1.1-7.1.3 Ohm’s Law & Emf
Wed. [7.1.3-7.2.2 Emf & Induction
Fri., |7.2.3-7.2.5 Inductance and Energy of B

Mon., |7.3.1-.3.3 Maxwell’s Equations
Tues. HW10

Wed. |10.1-.2.1 Potential Formulation

Where we’ve been
Stationary Charges — producing and interacting via Electric Fields
Steady Currents — producing and interacting via Magnetic Fields

Where we’re going

Varying currents and charge distributions — producing and
interacting with varying Electric and Magnetic Fields

A step closer to
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ﬁQ(_CI:Q{Eq + 17 X §q}

where
Eq 4;’8 Neo: =[(c? —v)u+ix (U xd)]
and  B,= 4;’8 o “[ax [(c2 = vA)T +7x (@ x D)]]
or

= _ CIQ (2 2 _ 2\ - — - z A 2 . 2\ N — -
FQ<—q_4T[£O (71)° {[(C U+ X (U X a)]} +\ - X [m X [(c® —v)u + 72X (U X a)]]}
f |

Electric Magnetic
Depends on observer’s Also depends on
perception of source observer’s perception of
charge’s velocity and recipient charge’s velocity

acceleration



