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But first: example with linear media 



Example/Exercise:  A coaxial cable consists of a copper wire of radius a 
surrounded by a concentric copper sheath of radius b.  Copper has a 
magnetic susceptibility cm.cu.  The space between is filled with an insulating 
material of susceptibility cm.i.  If a current I flows up the inner wire 
(uniformly distributed across the wire’s cross-section) and down the outer 
sheath,  
a) find the Auxiliary field everywhere 
b) Find the Magnetization everywhere 
c) Find the Magnetic field everywhere 
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I’ll do for s<a (inside coper wire), 
you’ll do b<s<a and s<b 



The other magnetism 

Ferromagnetism 

The 3d level is actually higher energy than the on-average 
larger 4s (which has 4 radial peaks, one closer to the nucleus 
than the 3d’s inner radial peaks), so Iron and its neighbors 
have filled 4s but only partially filled 3d which is too far in to 
covalently bond but far enough out to overlap with 
neighboring irons’ 3d’s and form a conduction band.  So they 
can share extended wave functions and long wavelength’s it’s 
energetically favorable for electrons in this band to be spin-
aligned! 

Fe:  1s22s22p63s23p63d64s2 

(http://www.theeestory.com/topics/9807) 

Full 4s 

Not full 4p 



Ohm’s Law – charged particles moving in a wire 
The classical Drude model 
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Ohm’s Law – charged particles moving in a wire 
The classical Drude model 
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Ohm’s Law – the current density is proportional to the field 

E is uniformly perpendicular to, and constant 
over this area (otherwise, we’d have a curl) 

VIR  (sign is usually neglected, but means ‘current flows down hill.’) 
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Example: Pr. 7.4  Two long, coaxial metal cylinders separated by a 
material with conductivity (s) = k/s.  What is the resistance, R? 
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Exercise:  Alternatively, imagine charges Q and –Q 
on the two surfaces, find E and a) corresponding J 
and integrate for I, then b) corresponding V, then 
take the ratio. 
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Energy Dissipation 

Energy transferred to differential bit of charges when 
accelerated through a potential difference: 

wireqW 

Rate at which energy is transferred : 

V
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W
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The wire warms up and, unless it 
melts first (thus stopping the 
current and the heating), it must 
shed the energy by heating the 
environment – conduction and 
radiation (as in an incandescent 
lamp’s filament.) 

But in steady-state, charges 
moving in a resistive material 

have no average gain in energy 
because they repeatedly collide 

with impurities and vibrations 
and transfer the energy to the 

atoms of the wire.  
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Example: Pr. 7.3  Two metal objects are embedded in a weakly 
conducting material of constant conductance , find the relationship 
between this, R, and C. 
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And by Gauss’s Law, 

A key point is that current is free to flow any direction out of one object to arrive at the other, so 
when it comes to integrating J over an area, it’s over a closed area surrounding one of the 
objects. 
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Emf (Electro-motive “force”) 
Some process inside a battery causes charge separation across 

terminals.  The field of those charges drive the current 
through a circuit. 
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Motional Emf 
Move conducting bar across magnetic field 

Mobile electrons move in response to magnetic force 

Resulting electric field and force  
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Motional Emf 
IRvBLmagEmf EL V
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Example: If the bar has mass m and initial speed vo, what will it be at time t? 
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Of course, now that we have established another component of 
charge motion, a current flowing up, there’s another component 
of magnetic force, 
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Demo!  - “eddy currents” 



Motional Emf 
Example 7.4 : Faraday Disk  A metal disk  of radius a rotates with an angular frequency  
(counterclockwise viewed from above) about an axis parallel to a uniform magnetic field. A 
circuit is made by a sliding contact.  
 
What is the current through the resistor R? 
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Motional Emf and Magnetic Flux 
BvLmagEmf

Will prove generality soon yL 
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Exercise: A square loop is cut out of a thick sheet of aluminum. It is placed so that the top 
portion is in a uniform, horizontal magnetic field of 1 T into the page (as shown below) and 
allowed to fall under gravity. The shading indicates the field region. What is the terminal 
velocity of the loop?  
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S(t+dt) 
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Generalization of Flux Rule 

Warning: our derivation used that the changing, da/dt, corresponded 
to moving charge, vdl.   Not applicable when that’s not the case.  
– thar be “paradoxes” 

(We will later extend this reasoning to discuss stationary charges but changing fields) 

  ld
q

Fmag




mag

B

B Emf
t






 lddtvBadB


   lddtvB


   ldBdtv






Where we’ve been 

Stationary Charges – producing and interacting via Electric Fields 

Steady Currents – producing and interacting via Magnetic Fields 

Where we’re going 

Varying currents and charge distributions – producing and 
interacting with varying Electric and Magnetic Fields 

A step closer to 
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Force between moving charges 
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Electric Magnetic 

Also depends on 
observer’s perception of 
recipient charge’s velocity 

Depends on observer’s 
perception of source 
charge’s velocity and 
acceleration 

𝐹 𝑄←𝑞=
𝑞𝑄
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𝑉
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× r × 𝑐2 − 𝑣2 𝑢 + r × 𝑢 × 𝑎  

𝑢 ≡ 𝑐r − 𝑣  
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𝐹 𝑄←𝑞=𝑄 𝐸𝑞 + 𝑉 × 𝐵𝑞  
where 

and 

or 


