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From last Time: Polarization
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Polarization & Electric Displacement

5_0dp P-4 and p=—VP  £E+P=D  Qu.=[p.dr=[D-da
dr
EXxercise: Consider a huge slab of dielectric material initially with uniform field, Eﬂ0 and
corresponding uniform polarization and electric displacement D, = ¢ E_ + P,
4 roA A You cut out a wafer-shaped cavity perpendicular to I50.
_ What is the field in its center in terms of E and P,?
|§0 Hint: Think of inserting the appropriate waver-sized capacitor.
0 What is the electric displacement in its center in terms of [30
! and P, ?




Boundary Conditions
Electric field, across charged surface
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Boundary Conditions
Electric Displacement, across charged surface
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Boundary Conditions
(static) Electric field, along charged surface
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Boundary Conditions
(static) Electric displacement, along charged surface
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Boundary Conditions
Electric and Dlsplacement f|eld/ top
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Boundary Conditions
Electric and Displacement fields
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Bar Electret (like an electric bar magnet): uniform P along axis
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Recall: Atom’s Response to Electric Field

For small stretch, first term in Taylor Series (Hook’s Law)
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| _—Linear Dielectrics
Point along field . i
. . Chunk of induced dipoles
Linearly proportional
for individual induced dipole
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Linear Dielectrics s
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Linear Dielectrics

o ar ==l ) Siee 7
Example: Alternate / iterative perspective on field in -
dielectric. Consider again a simple capacitor with Obao,
dielectric. We'll find the electric field in terms of l _>0 1- 7
what it would have been without the dielectric. l T Tl l
We’ll do this iteratively and build a series solutions. / 7
0. Say we start with no dielectric. Initially there’s the field ' —GC¥ree

simply due to the free charge; E,. .
We insert the dielectric and that field induces a polarization,
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Linear Dielectrics
Exercise: Try it for your self. A sphere made of linear dielectric

material is placed in an otherwise uniform electric field _)0.
Find the electric field inside the sphere in terms of the
material’s dielectric constant, ¢..

You can take it as a given that a sphere of uniform polarization
contributes field E =—P/3¢,




Example: A coaxial cable consists of a copper wire of radius a surrounded by
a concentric copper tube of inner radius c. The space between is partially
filled (from b to c) with material of dielectric constant ¢, as shown below.
Find the capacitance per length of the cable.

For the sake of reasoning this out, say there’s charge Q uniformly
distributed along the surface of the central wire.
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Exercise: There are two metal spherical shells with radii R and 3R. There
is material with a dielectric constant ¢, = 3/2 between radii R and 2R,
What is the capacitance?
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