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Mon. 9/9 

Wed. 9/11 

Thurs 9/12 

Fri. 9/13 

(C 21.1-.5,.8) 1.2 & 1.5; 2.2.1-.2.2 Gauss & Div, T2 Numerical Quadrature 

(C 21.1-.5,.8) 2.2.3 Using Gauss  

 

(C21.1-.5,.8)  2.2.3-.2.4 Using Gauss 

 

 

HW1 

 

 

Equipment 

 Bring in ppt’s Gauss’s Law 

 Tutorial 2 

 

Note: I should have recommended reading section 1.5 (delta function) as well. 

 

Last Time 

 Last time we worked on computing the electric field at some observation location due to 

a continuous distribution of charge.   In general, that meant summing, i.e., integrating, the 

contributions of all the differential morsels of charge: 
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Depending on the geometry of the charge distribution, this sum will be parameterized in different 

ways so that rather than summing over charge, you’re summing over locations that the charge 

occupies.  Fairly generally, 
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This Time 

 Unfortunately, that integral can be a challenge to perform.  For some geometries, or 

under some approximations, there’s a way that’s often simpler – using Gauss’s Law. 

Back in Phys 232, we derived 

   E da 
S
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Qenc 

Which we call Gauss’s Law. 

The argument went something like this: 

Flux 

 First we got familiar with the notion of Flux, generally a measure of flow through an area 

/ into or out of a volume. 

 Example: Rain 

o Flux through single, open area. Say it’s raining out and you have left your 

window open.  Then, a reasonable question would be, at what rate is rain 

coming in your window.  To make it concrete, let’s say that we measure 
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amount of rain in terms of the mass of water.  What’s the rate at which water 

comes through the window? 
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 Flux through whole closed area.  Now, what if we were interested in not just the flux 

through a particular window, but into the whole room.  That’s simply the sum of fluxes in 

through all windows, out through the door, down through the floor (boy, that’s gonna be 

a mess to clean up!). 

 

             iiidoorwaterfloorwaterwindowwaterwindowwaterroomwater Av


21  

o Area direction convention – “in.” In this case, it’s convenient to have all the 

area vectors point into the room, so that you get positive contribution if the 

velocity points in and negative contribution if it points out (as with the door and 

floor.) 

 Integral Form.  More generally, this discrete sum can be written as a continuous 

integral. 

inroomowater Adv


.int.  

 For the sake of future arguments, often one talks about the flux out through a closed area 

rather than in through it.  Of course, that’s just the opposite of in through the area. 

outroomoutwater Adv


..  

 Generalizing: Any “vector field.”  While our physics idea of “flux” connects best with 

the common usage when we’re talking about something (in this case, water) being 

transported, the same mathematical and conceptual tool can be applied to any thing that’s 

represented by a vector field, such as… the electric field. 

v
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 Electric Flux 

 

o Now let’s apply the same idea to an Electric field.   

   Through a patch of area, 

AEE


 

   In or out of a closed surface 

AdEE


 

  As Griffith’s points out, the analog to water stream lines is electric field lines. 

o Motivation – What’s it good for? That’s a swell definition and all, but you may be 

wondering why we bother – what practical use is such a definition.  It turns out that 

there’s a very simple relation between electric flux and charge distribution.  That means 

that if you know one, it’s easy to find the other, and in some cases it’s easier to solve for 

E through a flux argument than simply summing over the sources as we’ve done in the 

past. 

o If that seems a worthy goal, then let’s figure out what that but what’s important is that, 

regardless of how messy the integral is, it has very simple solution.  The book argued it 

out piece by piece, so now let’s put all the pieces together in a coherent story. 

 

Relate Flux and Charge 

o This is a very general tool, so I’ll give you some vague visuals to help think about it, but 

don’t take them too literally.  Say we have some charge distribution like want to know 

the Flux of the electric field out a surface like this 

 

 

 

 

 

 

 

o First, Supperposition: recall that the field of a charge distribution is simply the sum of 

the fields due to each point charge that makes up the distribution.  That is, no matter how 

you have N charges distributed, the field at a given location on the surface is simply  
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That means that 
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Looking just at Charge 1 (which is inside the area). So, we can divide and conquer – find the 

flux due to one point charge, and then put it back together.  Of course, the field at our 

observation location due to a point charge is simply 102
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Now, let’s consider that dot-product.  It simply calls for the projection of the patch of area 

perpendicular to r-hat.  So, even if we’re dealing with a surface like 

 

 

 

 

 

 

 

we still only have to worry about the perpendicular projection of the patch of area.  Let’s 

parameterize the patch in terms of variables we can hope to integrate.  Given the spherical 

symmetry of the point charge’s electric field, a good choice of coordinate systems is spherical.  

In that system, a differential area is  

ddrdrrddA sinsin 2
.   

Plugging that into our flux equation, we have  

o Flux through patch. 

o Now, across just this little patch of surface area, the flux is then just 
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Depends only on Angles. Remarkably, it only depends on the solid angle the area subtends.   
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If “the solid angel of the area subtends” is a bit foreign to you, think of it this way.  Say 

you’re a charge, radiating in all directions, and this room, it’s walls, ceiling, and floor 

define the surface area.  How much of your radiation passes through a given surface 

depends on how much of your view it takes up.  Looking at a tile above you, it measures 

about 10° (or /18 radians) by about 10° (or /18 radians) so its solid angle is roughly the 

product, 
2
/324 rad

2
, that’s what determines how much of your radiation flows through it. 

 

Flux through whole surface. Going ahead and integrating over the whole surface area then gives  
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And there’s a very simple result! 

Q:  What about charge on the outside? 

 

Charge outside the area. 

Now, before we go back to the total flux for a big charge distribution, we need to consider the 

other case – here we’ve considered a point inside the surface, what about one outside the 

surface? 

Well, notice that the dot-product of r and n was positive, and that, as long as the charge is inside 

the surface, it r and n will always both point outward, so they’ll always be positive. 

 

 

 

 

 

 

 

If the charge is outside, on the near surface n and r will point in opposite directions, so the dot 

product will be negative while on the far side they’ll point in the same direction, so they’ll be 

positive.  All that matters in the math is the angle subtended; perhaps you’ll buy that, as you 

sweep through angles, for every patch through which the field flows out there’s a canceling patch 

through which the field flows in.  So summing over the whole surface, the flux comes to zero.  

(This is a very sketchy argument, the book is a little more thorough.) 

The analogous situation would be if you had a shower head spraying water out in all directions 

(instead of a charge) and a loose-mesh bag (for the surface), then whatever water flows in from 

the left, flows out through the right, making for no net flux “into” or “out of” the bag.  
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So any charge enclosed by the surface contributes to the flux to the tune of 
o

enclosedq
 while all 

excluded charges contribute nothing.   

 

Thus we have  
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regardless of the shape of the surface. 

 This is the integral form of Gauss’s Law.  

 

We also derived the differential form of this. 

See PowerPoint 

(1) Gauss’s law 

Consider a small box with edges along the coordinate axes.  

 x

 y

 z

 x ,y, z

 Ex( x)

 Ex( x x )

 x

 y

 z
 

Calculate the electric flux per volume in the limit that the volume goes to zero, which is the 

divergence of E : 

 

Divergence 

 Motivation. Return to Rain 

o Recall that the general idea of a “flux” is a flow rate: the charge flux down a wire, 

dq/dt, is the current.  Similarly, in the example of rain that we used to motivate 

the definition of flux, the rate at which water enters a room through some open 

windows would be a flux. Adv
dt

dm
ww

w
w
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o Normalizing per Volume. Now, if I told you that 1 kg of water rained in per 

minute, you’d be pretty worried – until I told you that the room was the 

Superdome- that volume’s huge.  1 kg / minute leak isn’t so bad as if we were 

talking about, say , this room.  This example illustrates that flux alone doesn’t tell 

the whole story.  Sometimes you’re more interested in flux per volume.  On a per 

volume basis, the same flux into the Superdome is nothing compared to that into 
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this room.  Flux out per volume is “Divergence.” (Conversely, I suppose we’d call 

Flux in per volume “Convergence”=–Divergence)   
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Math. 

Now for a little math. 
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The other side of Gauss’s law over the volume in the limit that the volume goes to zero is: 

lim

V 0

1

0

qinside

V 0

, 

where  is the charge density. The differential form of Gauss’s law is: 
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Note that this is a scalar equation. In the second form, the “del” operator is 
x

ˆ i 
y

ˆ j 
z

ˆ k .  

 

Examples/Exercises: 

Problem (from answer of 2.16) 

Suppose the electric field (in cylindrical coordinates) is 

 E 
Csˆ s s a

Ca2 s ˆ s s a
  

What is the charge density in each region? 

The charge density is 0 E . Since the electric field only has an s (radial) component, 

the divergence (from the front cover) is 
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Computational Tutorial #2 – Numerical Integration (have students go through it) 

 

 

 

Preview 

The first attempt at HW #1 is due tomorrow at 3 pm. You must make a first attempt in order to 

get any credit for a problem! 

For Monday, you’ll read about applying Gauss’s Law. 

 

 

 

 

 


