
Physics 332:  E&M 2013  Induction, Inductance, Energy with B 

 

Equipment 

 Magnet and copper pipe 

 Induction coils with diodes and magnets from 232 

 Two inductive coils, function generator and o’scope to see induced voltage. 

 

Several ways to change the Magnetic Flux:  

Exercise – Come up with ways to change the magnetic flux through a coil using either a 

second coil or a permanent magnet 

All of the following will result in an induced emf in the coil 2 on the right.  

1. Change the current in coil 1 

 I1 increasing
 B 1 inc reasing

 
2. Move coil 1 (with current through it) 

 v 1  B 1 inc reasing
 

3. Move coil 2 (with current through coil 1) 

 v 2  B 1  
4. Rotate coil 1 

 

 B 1   
 

Rotate coil 2 
 

 B 1   
5. Move the magnet relative to the coil (includes moving coil toward magnet) 

Wed., 11/6 

Fri., 11/8 

7.2.3-7.2.5 Inductance and Energy of B  

7.3.1-.3.3 Maxwell’s Equations  

 

 

Mon., 11/11 

Wed., 11/13 

Fri., 11/15 

10.1 - .2.1 Potential Formulation 

10.2 Continuous Distributions 

10.3 Point Charges 

HW8 
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 v 1  B 1 inc reasing

 N S

 
6. Rotate the magnet  

 

 B 1 

 N 

 S 

 

7. Rotate the coil  

 

 B 1 

 N  S 

 
 

Problem 7.14 

Explain why a cylindrical magnet takes much longer to drop through a vertical copper 

pipe than an unmagnetized piece of iron does. 

(Ignore the part about the “current in the magnet”) 

 

 

 

Demo: drop a magnet down a copper tube (not ferromagnetic) –very slow compared to 

free fall! 

Each cross section of the pipe can be considered a loop. There will be induced currents 

around the pipe. These in turn produce magnetic fields, so it’s like having two magnets 

interact.  You will explain the slowing in terms of forces in Prob. 22.1 (c). 

 

 

Lenz’s Law 

We usually just used Faraday’s law to find the magnitude of the emf and don’t worry 

about the minus sign. Lenz’s law can be used to determine the direction of the 

induced current. It states that, “Nature abhors a change in magnetic flux.” In other 
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words, the induced current will produce a magnetic field that will somewhat oppose 

the change in flux. 

Apply this to the figures above. 

 

Examples 

Pr. 7.12  

Example 7.7 (an Ampere’s Law type approach).  A long solenoid with radius a and n 

tunrs per unit length, caries time varying current, I(t).  What’s an expression for the 

electric field a distance s from the axis (inside and out, quasi-static approximation)? 

Pr. 7.15  
dt
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Given rotational symmetry and lack of charge sources (lack of divergence) 
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And this is such as to drive a current opposite the change in current, so create a flux 

opposite the loss / gain of flux. 
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Problem 7.16 – Coaxial Cable with Change Current 

An (slowly) alternating current I t I0 cos t  flows down a long, straight, thin wire 

and returns along a thin, coaxial conducting tube of radius a.  

a. In what direction does the induced electrical field point? 

Let the current on the central wire be in the +z direction. In the quasistatic 

approximation (current changes slowly), the magnetic field is circumferential. A 

changing magnetic field in this direction is analogous to the current for a solenoid, 

which produces a longitudinal (in z direction) magnetic field. Therefore, the 

direction of the induced electric field is longitudinal.  Alternatively, the field 
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needs to be int eh direction to drive current as to oppose the changing current – so 

if current is growing in the z directin, it needs to point in the -z, and vice versa.  

Similarly out at the cylindrical shell, but clearly the field must be opposite to what 

it is inside. 

b. Assuming that the field goes to zero as s , find the induced electric field 

E s, t . 

The magnetic field in the quasistatic approximation is (use Ampere’s law) 

 B 

0I

2 s
ˆ s a,

0 s a.

 

By symmetry, we also know that the induced electric field only s (and t). Use the 

same shape of “amperian loop” as for a solenoid (see the diagram below). 

 

 

 a 

 s 

  

 Stretch this side to show  

 that E is zero out here. 

 z 

 r 

 dr 

 

We can argue that the induced electric field is the same at all distances outside the 

coaxial cable, so it must be zero (use the loop on the left).  

For a loop with one side inside the cable (on the right), the line integral of the electric 

field around the loop is E d E , because only the bottom side is non-zero. 

Consider a thin strip between distances r and r + dr from the long wire that is enclosed by 

the loop. The magnetic flux through this segment is 

 d 0I

2 r
 dr . 

The magnetic field comes out of the page, so the flux is positive by the RHR. The 

total flux through the loop is 

 0I

2

dr

r
s

a

0I

2
ln r

s

a 0I

2
ln

a

s
. 
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Putting in the function for the current and applying Faraday’s law, 

E d d dt, gives 

 E s, t

0I0

2
ln

a

s
sin t ˆ z s a,

0 s a.

 

 

 

Pr. 7.17 
dt

d
emfIR B  (use Lenz’s Law for direction) 

Inductance. 

Now, since flux is proportional to field and field is proportional to current, the flux 

through a loop is proportional to the source current.  We can phrase this fact as 

12 MI  where M is the proportionality constant, “Mutual Inductance.” 

What does M depend upon? 
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Either way, it’s clear that the proportionality constant just depends upon the geometry 

of the sensor and source loops. 

Ex 7.10 

A short solenoid (length , radius a, n1 turns per length) lies on the axis of a very 

long solenoid (radius b, n2 turns per length). What is the mutual inductance? 

 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

 

Of course, as we’ve just found in Faraday’s Law, 

 
dt

dI
M

dt

d
emf 12 (assuming the geometry remains constant) 
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Suppose there is current I2 running through the longer, outer solenoid. The magnetic 

field inside it is B2 0n2I2 in the longitudinal direction. The flux through one loop of 

the shorter solenoid is B2 a2

0n2I2 a2. There are n1  turns, so the total flux is 

1 0n2I2 a2 n1
. The mutual inductance is defined by 1 MI2, so  

 M 0n1n2 a2 . 

 

A current I around a single loop will also produce a magnetic flux through itself 

which is proportional to the current. The flux can be written as LI , where L is the 

self inductance (or just inductance). The induced emf that results from a change of 

the current is 

 L
dI

dt
. 

The minus sign means that it is in the direction opposing the change in current. 

 

 

Energy of Magnetic Fields 

You wouldn’t be surprised if I suggested that it took work to get massive particles, 

who happen to bear charge, accelerated from rest to any particular speed.  Of course, 

once they’re coasting at that speed, they’re generating a magnetic field.  In addition to 

what it takes to move the masses, there’s also work necessary to fight the electric 

fields that get generated while the charges are being accelerated.  How can we get at 

this? 

 

Well, the rate at which energy gets transferred from an electric field to charged 

particles is  

 IemfIVP qE  

For you to be pushing the charges along in spite of the opposing electric field, you 

must at least balance this rate of energy transfer 

 IemfP qyou  

But the emf that we’re talking about is that induced by the changing current itself 

(very much like the voltage between capacitor plates is produced by the charges 

we’re trying to put on the plates) 
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This echoes what we showed for charging up a capacitor.  As in that case, we can do 

a little work to rephrase this in terms of the field so that we find 

 

 dBLIW
o

2

2
12

2
1  

 

Can we don another example on how a changing magnetic field produces current?" Davies        
 

 

"We go over Griffiths argument to get from 7.34 to 7.35 the choice to integrate over all space is 
an interesting one and I'd like to go in to more detail." Casey P,  

Can we just go over the whole derivation of 7.35 because I didn't understand how he 

got to it. Jessica 

Yeah, I also had much more difficulty following the derivation in this section than 

those in the previous sections. Perhaps we can go over each step. Casey McGrath 

I'm with everyone else on this one. These derivations are the hardest and least 

straightforward thing in the chapter. At some point I lose track of what we are doing 

and the physical meaning is lost, making it just a mess of variables. I can't figure out 

how Griffiths gets through certain steps. Anton 

 

 

"Why is the energy to crank up a current not dependent on time? Would back emf push back 
harder to resist this change in current?"Davies        
 

 

"I didn't quite understand what he meant by "the energy 'is stored in the magnetic field,' in the 
amount ((B^2)/2*mu naught) per unit volume" can you explain what he meant by this?"Connor W,  
 

 

"I'd be interested to go over exactly how Griffiths gets those two properties from the Neumann 
formula and go a little more in depth as to their significance."Ben Kid      
 

 

"Why is it that the Neumann formula isn't very useful for actual calculations? It doesn't seem like 
those line integrals would be that bad, unless I'm really missing something."Freeman,  
 

 

"Can we talk more about the concept of inductance and examples of how it is useful?"Sam        
 

 

"I'm trying to understand the significance of the time constant: so what is it that dictates (2/3)rds 
of the current's final value is substantial? Is it that the current is strong enough to overcome back 
emf and R to freely flow through the wire?" Rachael Hach       
 

 

"Can we talk about how the "back emf" is produced? Can we also go over example 7.13 or a 
similar problem?"  Spencer 

 

 

 

 

 

 

 

http://www.google.com/moderator/#11/e=213d0d&u=CAIQzLuG5ZmKj_86
http://www.google.com/moderator/#11/e=213d0d&u=CAIQytbjmuXUx99L
http://www.google.com/moderator/#11/e=213d0d&u=CAIQya2ftc3r_Jss
http://www.google.com/moderator/#11/e=213d0d&u=CAIQqN-8oLLxja5K
http://www.google.com/moderator/#11/e=213d0d&u=CAIQo-y5hou98fI7
http://www.google.com/moderator/#11/e=213d0d&u=CAIQzLuG5ZmKj_86
http://www.google.com/moderator/#11/e=213d0d&u=CAIQu_Xj6PPJ09kb
http://www.google.com/moderator/#11/e=213d0d&u=CAIQi_ar3N_7iMlW
http://www.google.com/moderator/#11/e=213d0d&u=CAIQ_Kz8wpPkxYyWAQ
http://www.google.com/moderator/#11/e=213d0d&u=CAIQ0IfK-KDW8NQn
http://www.google.com/moderator/#11/e=213d0d&u=CAIQoImI-NKx_I2mAQ
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Summary 

Maxwell’s Equations So Far – in both differential and integral forms 

Gauss’s law 

 E 
0

 E da 
Qenc

0

 

No name 

 B 0 B da 0  

Faraday’s law 

 E 
B 

t
 E d

d

dt

d

dt
B da 

surface

 

Ampere’s law – this is incomplete! 

 B 0J  B d 0Ienc
 

 

What’s Wrong With Ampere’s Law 

We have both a Mathematical and a Physical reason to conclude that something’s 

wrong with ampere’s law. 

Physical 

Let’s try applying Ampere’s Law to a circuit containing a charging capacitor to rather 

oxymoronic effect.  Consider a circuit with a battery charging a capacitor (if it makes 

us feel better, let’s say it’s a constant-current source doing the charging, so we’re 

squarely still in magnetostatics.) Choose an Amperian loop around the wire. As the 

current flows, it produces a magnetic field that curls around the wire that we can 

relate to the current flowing through the wire if we choose a flat surface across the 

loop:  

 0wireopierceo IIdB 


. 

Then again, if we choose a “bubble” shaped surface that passes inside the capacitor 

(see the diagram below), then 

 0
surface

pierce adJI


, 

Yet we’ve got the same loop around which we’re evaluating the magnetic field; it 

can’t be both zero and non-zero. 

 

Mathematical 

Mathematically, the divergence of a curl is 0.  That’s just a mathematical fact.   

 0A


 (Vector Identity 9) 
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Yet, when we take the divergence of Ampere’s law, we have 

 JB


0
 

And we’d derived the continuity equation as 

 
t

J


 (5.29)  

which says that a net out flow of current implies a depletion of charge concentration. 

So, 

 
t

B 0


 

Of course, this isn’t a problem in electrostatics since charge densities aren’t changing 

in that case; however, in general, charge densities certainly can change, so in general, 

this is a big problem.  Clearly something’s wrong with our math when charges are 

accumulating/depleting.  The divergence of the curl of B must be 0, so there must be 

something else on the left hand side of the equation that equals this rate of change of 

current density.  

 

 

Correcting Ampere’s Law 

 

     vs      

Physical & Mathematical 

Hm… a situation in which charge density is changing.  Capacitors are all about that; 

we’re always ‘charging’ them up or down.  Now, we’ve got a pretty good hunch how 

Ampere’s Law should be fixed.  Let’s look at the capacitor situation.  So, there’s not 

current piercing the surface that runs between the plates; is there anything in the gap 

that we can relate to the current in the wire?  Sure, the electric field that’s growing 

because of the onrush of charge to the plates.  In fact, we can relate the offending 

charge density to field through 

 
0E


 

So, we could kill off the right hand side if we amended the equation to read 
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tt

E
B o 00




 

That way, we can merrily say that the divergence of the curl of B is zero and have 

something equaling our changing current density. 

 
t

E
t

o 000


 

Which is nothing more than the time derivative of Gauss’s Law. 

Then, backing out of the divergence and the continuity equation, we have 

 J
t

E
B





000  

Or integrating and applying Stoke’s Theorem, we have 

 
pierce

a

E I
t

ldB 000


 

 

Now let’s return to our charging capacitor 

 
dt

dq

dt

dq
I

plateplate

wire  

But recall how the charge on a capacitor plate is related to the field between the plates 

(which is that piercing our surface)  

 Eoo

o

EAq
A

q
E  

Thus, 

 
dt

d
I E

owire  

So, if we use the surface that slices through the wire, then we have  

 wireIldB 0


 

If we use the surface that slices between the capacitor plates, then we have 

 000

a

E

t
ldB


 

Where the electric field flux term has the same value as 
dt

d
I E

oowireo  

Again making the integral of B evaluate to the same thing 

 wireIldB 0


. 
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Our fix seems to work!  Experiments have proven it correct. 

Looking back at 

 J
t

E
B





000  

The electric field term has been called the “displacement current (density)”  

 
t

E
J d




0 .   

Similarly, flux of this through an area is called the “displacement current”,  

 
t

I E
d 0 .   

As Griffith’s points out, this is not a real current; however, as he mentions in a paper, 

this could be viewed as a “proxy” for currents elsewhere.  That is, the magnetic field 

at location r may curl because of the current at location r or because of the currents 

elsewhere.  We’ll see this in more detail in Ch. 10. 

 

Examples/Exercises: 

~Problem 7.32 – Magnetic field in a charging capacitor 

Thin wires connect to the centers of thin, round capacitor plates. Suppose that the 

current I is constant, the radius of the capacitor is a, and the separation of the plates is 

w (<< a). Assume that the current flows out over the plates in such a way that the 

surface charge is uniform at any given time and is zero at t = 0.   

c. Find the electric field between the plates as a function of t. 

 z
a

tI
z

A

tq
E

o

wire

o

ˆˆ
)(

2


T 

d. Find the “displacement current” through a circle of radius s in the plane midway 

between the plates. Using this circle as your “amperian loop” and the flat surface 

that spans it, find the magnetic field at a distance s from the axis. 

The displacement current density is  

 2

2

2

2

0

2

0

0

0

00 s
a

I
s

a

I
da

a

tI

t
ad

t

E

t
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s
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s

E
d




, 

 Note, this is exactly what you’d get for Ienclosed if you had a wire of radius a and 

you wanted to know how much flowed within a smaller radius s. 

By symmetry we know that the magnetic field is of the form B B s ˆ . Applying 

the Ampere-Maxwell equation gives 
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2

2

0,02
a

s
IIIsBdB wireencdenc
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 ˆ
2 2

0

a

sI
B wire


 

Which is exactly that the same fraction of the radius out from the center of the 

wire. 

 

e. We’ll find the current running along the surface of the capacitor plate by 

considering two different Amperian surfaces for the same Amperian loop. 

Surface 1: the obvious, flat one bound by this loop 

f.  

0

1

00

1

0

1

00

surf
a

E

surf

pierce

surf
a

E

t
ldB

I
t

ldB
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

 

 

 

Surface 2: the not-so obvious, can-shaped one bound by this loop 

 

 

                                            

platewire

surf

pierce

surf
a

E

IIldB

I
t

ldB

0

2

0

2

00

0




 

(the minus sign since, while the wire’s current flows in through the surface, the 

current in the plate flows radially out through the surface.) 

 

Of course, regardless of the area you choose, it’s the same loop over which you’re 

evaluating the magnetic field, so 

  platewire

surf
a

E IIldB
t
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Thus 
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We found in part b) 2

20 s
a

I

t

wireE  

So, 

2

2

2
1

a

s
Is

a

I
II wire

wire
wireplate  

 

 

Problem 7.33 – Displacement current in a coaxial cable with alternating current 

For Problem 7.16, a current I t I0 cos t  flows down a long, straight, thin wire 

and returns along a thin, coaxial conducting tube of radius a. The electric field for the 

region s < a is  

 E s,t 0I0

2
ln

a

s
sin t ˆ z . 

a. Find the displacement current density J d . 

 J d 0

E 

t

0 0I0

2

2
ln

a

s
cos t ˆ z 0 0I

2

2
ln

a

s
ˆ z , 

because I I0 cos t . 

b. Integrate to get the total displacement current Id. (What direction does it “flow”?) 

The displacement current “flows” in the z direction inside the coaxial cable, so we 

need to integrate over a circle of radius a. Since J d  depends on s, so divide the 

area into thin rings between s and s + ds. 

 

Id J d da Jd s 2 s ds
0

a

0 0I
2 ln

a

s
s ds

0

a

0 0I
2 sln a sln s ds

0

a

0 0I
2 s2

2
ln a

s2

2
ln s

s2

4
0

a

0 0I
2a2

4

 

c. Compare I and Id. What is their ratio? If the outer cylinder has a diameter of 2 

mm, how high would the frequency have to be for Id to be 1% of I? 

The product of the electric and magnetic constants is 0 0 1 c2
, so 

 
Id

I

0 0

2a2

4

a

2c

2
1

100
, 

 
a

2c

1

10
, 
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c

5a

3 10 8m/s

5 0.001 m
6 1010Hz . 

Note that a is the radius, not the diameter. The (ordinary, not angular frequency) 

is 

 f
2

6 1010Hz

2
1010Hz , 

Or 10 GHz, which is way above radio, but some devices are pushing these 

frequencies. 

 

7.34 (unless its homework) 

 

Summary 

Maxwell’s Equations (Complete!) – in both differential and integral forms 

Gauss’s law 

 E 
0

 E da 
Qenc

0

 

No name 

 B 0 B da 0  

Faraday’s law 

 E 
B 

t
 E d

d

dt

d

dt
B da 

surface

 

Ampere’s law – this is incomplete! 

 
B 0J 0 0

E 

t

0 J J d

 

B d 0Ienc 0 0

d

dt
E da 

0Ienc 0 0

d elec

dt
0 Ienc Id ,enc

 

Derivations 

There’s a long history of people trying to derive Maxwell’s relations from something 

more concise.  For example, Heras (AJP 75 p 652) demonstrates that more generally, if 

you have a scalar a vector “source”  that are time dependent and related by a continuity 

equation, then you can define associated fields that obey, essentially, Maxwell’s 

Equations.  Another paper shows that, if you start with coulomb’s law for a stationary 

charge, and transform into a frame in which the charge is accelerating, you get all the 

right fields.  So, it seems that these laws are not necessarily fundamental in the sense that 

‘that’s just the way nature works’ rather they may be considered to follow from 

something still more fundamental.  Feynman offers the word of caution that most 

‘derivations’ involve assumptions that themselves bear justification – thus it just 
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rephrases the question.  On the other hand, the reasonability of an assumption is in the 

eye of the beholder. 

 

 

 

Boundary Conditions 

Suppose there is a surface with a charge density  (may depend on position). The 

electric field just above and below the boundary are related by 

 Eabove Ebelow

1

0

 E above

|| E below

||  

These relations can be summarized by 

 E above E below

0

ˆ n , 

where ˆ n  is a unit normal vector that points “above.” The electric (scalar) potential is 

continuous across the boundary, Vabove Vbelow , but its derivatives are not all 

( E V ). 

 

Suppose that there is a surface current K  on a boundary. 

 Babove Bbelow  Babove

|| Bbelow

||

0K  (not in same direction) 

These relations can be summarized by 

 B above B below 0 K ˆ n  

The magnetic vector potential is continuous across the boundary, A above A below , but 

not all of its derivatives are ( B A ). 

 

 


