Calculus I: Optimization without Calculus

Quadratic functions and parabolas

The graph of the equation $y = ax^2 + bx + c$, $a \ne 0$, is a parabola.

If a > 0, the parabola opens upward (it's concave up).

If a < 0, the parabola opens downward (it's concave down).

Notice that y'' = 2a, so what we learned in pre-calculus classes is consistent with what we have learned in calculus class.

The vertex of the parabola has x-coordinate $x = \frac{-b}{2a}$.

Notice that y' = 2ax + b = 0 for $x = \frac{-b}{2a}$, so, again, what we learned in pre-calculus classes is consistent with what we have learned in calculus class.

Sine and cosine functions

The largest value of the cosine and sine function is 1 and the smallest value is -1. This means that $-1 \le \cos(\theta) \le 1$ and $-1 \le \sin(\theta) \le 1$ for every angle (or argument) θ . It also means, for instance, that the largest value of $f(x) = 17\cos(4x+7) - 12$ is $17 \cdot 1 - 12 = 5$ and the smallest value of $f(x) = 17\cos(4x+7) - 12$ is 17(-1) - 12 = -29, and in fact that $-29 \le 17\cos(4x+7) - 12 \le 5$. Graph the function and see!

For what values of x do we have f(x) = -29? The answer is infinitely many values of x, but let's find just one! Since we get f(x) = -29 by making

$$f(x) = 17\cos(4x+7) - 12 = 17(-1) - 12 = -29$$
, we want to find x that makes $\cos(4x+7) = -1$.

Since
$$\cos(\pi) = -1$$
, if we just make $4x + 7 = \pi$, we'll have it.

You can check that $x = \frac{\pi - 7}{4}$ results in $4x + 7 = \pi$, hence in

$$\cos(4x + 7) = \cos(\pi) = -1$$
, hence in by hand. You

$$cos(4x+7) = cos(\pi) = -1$$
, hence in by hand. You $f(x) = 17 cos(4x+7) - 12 = 17(-1) - 12 = -29$. should get -29 .

Therefore, the point $\left(\frac{\pi-7}{4}, -29\right)$ is a global minimum point on the graph of f(x).

Other values of the cosine and sine functions that will come in handy are:

$$\cos\left(-\frac{\pi}{2}\right) = 0 = \cos\left(\frac{\pi}{2}\right) = \cos\left(\frac{3\pi}{2}\right), \quad \cos(0) = 1 = \cos(2\pi),$$

$$\sin\left(-\frac{\pi}{2}\right) = -1 = \sin\left(\frac{3\pi}{2}\right), \quad \sin(0) = 0 = \sin(\pi) = \sin(2\pi), \text{ and } \sin\left(\frac{\pi}{2}\right) = 1.$$