Calculus I: Derivatives as Limits

Step A. For each function f and each value x = a, compute the derivative f'(a) accurate to 4 places after the decimal point by making successive approximations to f'(a) using the formula $f'(a) \approx \frac{f(a+h) - f(a-h)}{2h}$ for $h \approx 0$. You are required to list at least five estimates, including those for h = 1, h = 0.1, h = 0.01, h = 0.001, and h = 0.0001, and to display at least three estimates in a row that are the same to 4 places after the decimal point. Record all estimates to at least 4 places after the decimal point.

- **Step B.** Sketch the graph of f on the specified interval. For example, in Exercise 1, sketch the graph of $f(x) = x^3$ on the interval $-2 \le x \le 3$. This means your x-axis should run from x = -2 to x = 3. Then sketch two lines: a secant line from the point with x-coordinate x = a 1 to the point with x-coordinate x = a + 1 on the graph of f, and a line tangent to the graph of f at the point (a, f(a)). Label each of these lines with its slope.
- 1. $f(x) = x^3$, x = 2, $-2 \le x \le 3$. [Answer to A: f'(2) = 12.0000 with estimates 13.0000 resulting from setting h = 1, 12.0100 resulting from h = 0.1, 12.0001 from h = 0.01, and 12.0000 from h = 0.001, h = 0.0001, and h = 0.00001. Answer to B: The secant line through the points (1,1) and (3,27) has slope 13. The tangent line at the point (2,8) has slope 12.0000]
- 2. $f(x) = \cos(x), x = -1 \text{ and } x = 2, -\pi \le x \le \pi$. [Answers: 0.8415, -0.9093]
- 3. $f(x) = \ln(x), x = 3, 0 < x \le 5$. [Answer: 0.3333]
- 4. $f(x) = e^x$, x = 1, $-1 \le x \le 2$. [Answer: 2.7183]
- 5. $f(x) = x^2$, x = 3, $-1 \le x \le 4$. [Answer: 6.0000]

 Challenge questions: For $f(x) = x^2$ and a = 3, does $\frac{f(a+h) f(a-h)}{2h} = 6.0000$ no matter what h is? For $f(x) = x^2$ and any fixed value of a, does $\frac{f(a+h) f(a-h)}{2h}$ always have the same value? What about for $f(x) = 5x^2$?

 For $f(x) = 5x^2 + 4x 7$? For $f(x) = bx^2 + cx + d$?
- 6. $f(x) = 3^x$, x = 2, $-1 \le x \le 3$. [Answer: 9.8875]
- 7. $f(x) = x^x$, x = 2, $0 < x \le 3$. To see the shape of the graph better, graph f from x = 0 to x = 1 and then from x = 1 to x = 3. [Answer: 6.7726]

8.
$$f(x) = |x|, x = -2$$
 and $x = 0, -3 \le x \le 3$. [Answers: $f'(-2) = -1.0000$ Although the limit of the estimates is 0.0000, the derivative does not exist at $x = 0$.]

Terminology to remember:

Ways to phrase Step A:

Compute the **derivative** f'(a).

Compute the **slope of the graph** of f at the point (a, f(a)).

Compute the slope of the line tangent to the graph of f at the point (a, f(a)).

Compute the **instantaneous rate of change** of f at x = a.

The estimate $\frac{f(a+h)-f(a-h)}{2h}$ is ...

... called a **difference quotient**.

... the **slope of the secant line** from the point (a-h, f(a-h)) to the point (a+h, f(a+h)) on the graph of f.

... the **slope of the secant line** from the point (a-h, f(a-h)) to the point (a+h, f(a+h)) on the graph of f.

... the **average rate of change** from x = a + h to x = a - h.