Logistic Models in R

Jim Bentley

1 Sample Data

The following code reads the titanic data that we will use in our examples.

```r
> titanic = read.csv(
+ "http://bulldog2.redlands.edu/facultyfolder/jim_bentley/downloads/math111/titanic.csv"
> titanic$AGE=factor(titanic$AGE,labels=c(Child,Adult))
> titanic$CLASS=factor(titanic$CLASS,labels=c(0,1,2,3))
> titanic$SEX=factor(titanic$SEX, labels=c(Female,Male))
> titanic$SURVIVED=factor(titanic$SURVIVED,labels=c(No,Yes))
```

Note that the plus signs (+) at the beginning of the lines are there to indicate that R is reading from a new line. They should not be entered as part of the code.

We can now check to see if the data frames have been created by entering

```r
> ls()

[1] "titanic"
```

2 Loading R Packages

```r
> ## load a few packages
> #install.packages("xtable")
> library(Hmisc)
> library(xtable)
> library(lattice)
```

3 Fitting Logistic Models

The models fitted here are the equivalent of those fitted in the SAS documentation.

3.1 CLASS

A model to test for the difference in odds of survival as determined by class may be fitted using the `glm` function with `binomial` error and `logit` link.
> titanic.logistic.class=glm(SURVIVED~CLASS,
+ family=binomial(logit),data=titanic)
> summary(titanic.logistic.class)

Call:
glm(formula = SURVIVED ~ CLASS, family = binomial(logit), data = titanic)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.3999 -0.7623 -0.7401 0.9702 1.6906

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.1552 0.0788 -14.67 <2e-16 ***
CLASS1 1.6643 0.1390 11.97 <2e-16 ***
CLASS2 0.8079 0.1438 5.62 1.91e-08 ***
CLASS3 0.0679 0.1171 0.58 0.562

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 2769.5 on 2200 degrees of freedom
 Residual deviance: 2588.6 on 2197 degrees of freedom
 AIC: 2596.6

Number of Fisher Scoring iterations: 4

Note that the (log) odds of survival do not differ for classes 0 (viewed as baseline) and 3. However, classes 1 and 2 differ from 0 (and thus 3) as well as from each other. This can most easily be seen using the odds ratios.

> coefs=summary(titanic.logistic.class)$coef
> est=exp(coefs[,1])
> upper.ci=exp(coefs[,1]+1.96*coefs[,2])
> lower.ci<-exp(coefs[,1]-1.96*coefs[,2])
> cbind(est,lower.ci,upper.ci)

 est lower.ci upper.ci
(Intercept) 0.3150 0.2699 0.3676
CLASS1 5.2822 4.0224 6.9366
CLASS2 2.2431 1.6923 2.9731
CLASS3 1.0702 0.8507 1.3463

> rm(coefs)

While the odds for class 3 relative to class 0 are essentially 1:1, class 1 has a 5.28:1 odds of survival and class 2 has a 2.24:1 odds of survival relative to class 0.
3.2 AGE and SEX

A model to test for the difference in odds of survival as determined by age and sex may be fitted using the \texttt{glm} function with binomial error and \texttt{logit} link.

\begin{verbatim}
> titanic.logistic.agesex=glm(SURVIVED~AGE*SEX, + family=binomial(logit),data=titanic)
> summary(titanic.logistic.agesex)

Call:
glm(formula = SURVIVED ~ AGE * SEX, family = binomial(logit),
 data = titanic)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.6497 -0.6732 -0.6732 0.7699 1.7865

Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.4990 0.3075 1.623 0.1046
AGEAdult 0.5654 0.3269 1.729 0.0837 .
SEXMale -0.6870 0.3970 -1.731 0.0835 .
AGEAdult:SEXMale -1.7465 0.4167 -4.191 2.77e-05 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 2769.5 on 2200 degrees of freedom
Residual deviance: 2312.8 on 2197 degrees of freedom
AIC: 2320.8

Number of Fisher Scoring iterations: 4
\end{verbatim}

This model may also be expressed as

\begin{verbatim}
> titanic.logistic.agesex2=glm(SURVIVED~AGE+SEX+AGE:SEX, + family=binomial(logit),data=titanic)
> summary(titanic.logistic.agesex2)

Call:
glm(formula = SURVIVED ~ AGE + SEX + AGE:SEX, family = binomial(logit),
 data = titanic)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.6497 -0.6732 -0.6732 0.7699 1.7865
\end{verbatim}
Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|-------------|----------|------------|---------|----------|
| (Intercept) | 0.4990 | 0.3075 | 1.623 | 0.1046 |
| AGEAdult | 0.5654 | 0.3269 | 1.729 | 0.0837 |
| SEXMale | -0.6870 | 0.3970 | -1.731 | 0.0835 |
| AGEAdult:SEXMale | -1.7465 | 0.4167 | -4.191 | 2.77e-05 *** |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2769.5 on 2200 degrees of freedom
Residual deviance: 2312.8 on 2197 degrees of freedom
AIC: 2320.8

Number of Fisher Scoring iterations: 4

The odds associated with the model are

```r
> coefs=summary(titanic.logistic.agesex2)$coef
> est=exp(coefs[,1])
> upper.ci=exp(coefs[,1]+1.96*coefs[,2])
> lower.ci<-exp(coefs[,1]-1.96*coefs[,2])
> cbind(est,lower.ci,upper.ci)
```

<table>
<thead>
<tr>
<th></th>
<th>est</th>
<th>lower.ci</th>
<th>upper.ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.6470588</td>
<td>0.90154072</td>
<td>3.0090740</td>
</tr>
<tr>
<td>AGEAdult</td>
<td>1.7601573</td>
<td>0.92740960</td>
<td>3.3406529</td>
</tr>
<tr>
<td>SEXMale</td>
<td>0.5030612</td>
<td>0.23104993</td>
<td>1.0953069</td>
</tr>
<tr>
<td>AGEAdult:SEXMale</td>
<td>0.1743855</td>
<td>0.07705575</td>
<td>0.3946531</td>
</tr>
</tbody>
</table>

> rm(coefs)

3.3 CLASS, AGE and SEX

A model to test for the difference in odds of survival as determined by class, age and sex may be fitted using the `glm` function with binomial error and logit link.

```r
> titanic.logistic.classagesex=glm(SURVIVED~AGE*SEX+CLASS*SEX+CLASS:AGE,
+ family=binomial(logit),data=titanic)
> summary(titanic.logistic.classagesex)
```

Call:

```r
glm(formula = SURVIVED ~ AGE * SEX + CLASS * SEX + CLASS:AGE,
    family = binomial(logit), data = titanic)
```
Deviance Residuals:

Min 1Q Median 3Q Max
-2.6771 -0.7099 -0.5952 0.2374 2.2293

Coefficients: (1 not defined because of singularities)

| | Estimate | Std. Error | z value | Pr(>|z|) |
|------------|----------|------------|---------|----------|
| (Intercept)| 1.86087 | 0.73347 | 2.537 | 0.01118 |
| AGEAdult | 0.03625 | 0.39325 | 0.092 | 0.92655 |
| SEXMale | -2.46011 | 0.81614 | -3.014 | 0.00258 **
| CLASS1 | 17.99982 | 920.38674 | 0.020 | 0.98440 |
| CLASS2 | 17.11036 | 405.66288 | 0.042 | 0.96636 |
| CLASS3 | -2.05502 | 0.63854 | -3.218 | 0.00129 **
AGEAdult:SEXMale	-0.68679	0.52541	-1.307	0.19116
SEXMale:CLASS1	-1.13608	0.82048	-1.385	0.16616
SEXMale:CLASS2	-1.06807	0.74658	-1.431	0.15254
SEXMale:CLASS3	1.66387	0.65601	2.536	0.01120 **
AGEAdult:CLASS1	-16.34159	920.38639	-0.018	0.98583
AGEAdult:CLASS2	-17.19040	405.66231	-0.042	0.96620
AGEAdult:CLASS3	NA	NA	NA	NA

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2769.5 on 2200 degrees of freedom
Residual deviance: 2097.5 on 2189 degrees of freedom
AIC: 2121.5

Number of Fisher Scoring iterations: 15

The odds associated with the model are

```r
> coefs=summary(titanic.logistic.classagesex)$coef
> est=exp(coefs[,1])
> upper.ci=exp(coefs[,1]+1.96*coefs[,2])
> lower.ci=exp(coefs[,1]-1.96*coefs[,2])
> cbind(est,lower.ci,upper.ci)
```

<table>
<thead>
<tr>
<th></th>
<th>est</th>
<th>lower.ci</th>
<th>upper.ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>6.429309e+00</td>
<td>1.52693798</td>
<td>27.0711771</td>
</tr>
<tr>
<td>AGEAdult</td>
<td>1.036918e+00</td>
<td>0.47973665</td>
<td>2.2412280</td>
</tr>
<tr>
<td>SEXMale</td>
<td>8.542543e-02</td>
<td>0.1725325</td>
<td>0.4229640</td>
</tr>
<tr>
<td>CLASS1</td>
<td>5.64805e+07</td>
<td>0.00000000</td>
<td>Inf</td>
</tr>
<tr>
<td>CLASS2</td>
<td>2.697330e+07</td>
<td>0.00000000</td>
<td>Inf</td>
</tr>
<tr>
<td>CLASS3</td>
<td>1.280899e-01</td>
<td>0.03664230</td>
<td>0.4477617</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEAdult:SEXMale</td>
<td>5.031883e-01</td>
<td>0.17967631</td>
<td>1.4091922</td>
<td></td>
</tr>
<tr>
<td>SEXMale:CLASS1</td>
<td>3.210755e-01</td>
<td>0.06429782</td>
<td>1.6033118</td>
<td></td>
</tr>
<tr>
<td>SEXMale:CLASS2</td>
<td>3.436711e-01</td>
<td>0.07955044</td>
<td>1.4847160</td>
<td></td>
</tr>
<tr>
<td>SEXMale:CLASS3</td>
<td>5.279697e+00</td>
<td>1.45950127</td>
<td>19.0991297</td>
<td>Inf</td>
</tr>
<tr>
<td>AGEAdult:CLASS1</td>
<td>7.997191e-08</td>
<td>0.00000000</td>
<td>Inf</td>
<td></td>
</tr>
<tr>
<td>AGEAdult:CLASS2</td>
<td>3.422187e-08</td>
<td>0.00000000</td>
<td>Inf</td>
<td></td>
</tr>
</tbody>
</table>

> rm(coefs)