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Abstract9

The amplitude response of infrared (IR) sensors based on reflected amplitude of the surrounding objects is non-linear and
depends on the reflectance characteristics of the object surface. As a result, the main use of IR sensors in robotics is for
obstacle avoidance. Nevertheless, their inherently fast response is very attractive for enhancing the real-time operation of a
mobile robot in, for instance, map building tasks. Thus, it seems that the development of new low-cost IR sensors able to
accurately measure distances with reduced response times is worth researching. In this paper, a new IR sensor based on the
light intensity back-scattered from objects and able to measure distances of up to 1 m is described. Also, the sensor model is
described and the expected errors in distance estimates are analysed and modelled. Finally, the experimental results obtained
are discussed. © 2002 Published by Elsevier Science B.V.
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1. Introduction20

Infrared (IR) sensors are widely used as proxim-21

ity sensors and for obstacle avoidance in robotics.22

They offer lower cost and faster response times than23

ultrasonic (US) sensors. However, because of their24

non-linear behaviour and their dependence on the re-25

flectance of surrounding objects, measurements based26

on the intensity of the back-scattered IR light are very27

imprecise for ranging purposes. For this reason, en-28

vironment maps made with this type of sensor are of29

poor quality, and IR sensors are almost exclusively30

used as proximity detectors in mobile robots. How-31

ever, some IR sensors described in the bibliography32

are based on the measurement of the phase shift, and33

offer medium resolution at long ranges (about 5 cm34

∗ Corresponding author. Tel.:+34-96-387-75-78;
fax: +34-96-387-75-79.

for distances up to 10 m[4]), but these are, in general,35

very expensive. 36

US sensors are widely used for distance measure-37

ment purposes. They offer low cost and a precision38

of less than 1 cm in distance measurements of up to39

6 m [1,4]. However, the most popular method used40

in these measurements is based on the time of flight41

(ToF) measurement. This ToF is the time elapsed be-42

tween the emission and subsequent arrival after re-43

flection of a US pulse train travelling at the speed of44

sound (approximately 340 m/s). This causes large re-45

sponse times (35 ms for objects placed 6 m away) for46

a single measurement. Moreover, the transducers used47

in robotics have wide angular sensitivity lobes (35◦, 48

typically), and offer poor angular resolution. 49

IR sensors using reflected light intensity to estimate50

the distance from an object are not common, and only51

a small number have been reported in the bibliogra-52

phy [3,7–9]; but their inherently fast response is very53

attractive for enhancing the real-time response of a54

1 0921-8890/02/$ – see front matter © 2002 Published by Elsevier Science B.V.
2 PII: S0921-8890(02)00271-3



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F2 G. Benet et al. / Robotics and Autonomous Systems 1006 (2002) 1–12

mobile robot. Also, highly directional transducers are55

commercially available, giving better angular resolu-56

tion than US transducers. Thus, it seems that the de-57

velopment of new low-cost IR sensors capable of ac-58

curately measuring distances with reduced response59

times is worth researching. Some low cost IR sensors60

based on the intensity of the reflected light have been61

reported. The sensor described[3,9] has poor range62

resolution and is only applicable for short distances63

(under 25 cm). In[10] a sensor offering an accuracy of64

0.5 cm is described, but it only works over short dis-65

tances (docking), and uses a priori known passive re-66

flectors as position references. In[7], several IR-based67

distance sensors are analysed and compared, but none68

is fully satisfactory. In fact, the main application for IR69

sensors in mobile robots is collision avoidance rather70

than active range sensing.71

In an unknown environment, it is not possible to72

make valid assumptions about the nature of the sur-73

face properties of objects, and additional information74

sources are needed to obtain the relevant parameters75

of the surfaces. More specifically, to interpret sensor76

output as a distance measurement it is necessary to77

know how a given surface scatters, reflects, and ab-78

sorbs IR energy[8]. Thus, to use IR in an unknown en-79

vironment, the surface properties must be determined80

during robot operation.81

US sensors can be used as a complementary source82

of information to determine the surface properties.83

This co-operation between the US and IR sensors is84

not a new idea. In a classic paper[5], a navigation sys-85

tem that combines information from these two sensors86

to build a more accurate map is described. US and IR87

sensors are frequently used in a complementary way,88

where the advantages of one compensate for the disad-89

vantages of the other. In[8], an IR sensor requiring a90

great deal of US co-operation to estimate the distance91

and angle of incidence from an object is described.92

In this paper, a new type of IR sensor is described.93

It is suitable for distance estimation and map building.94

Amplitude response as a function of distance and an-95

gle of incidence is easily formulated using a model that96

needs only one parameter: the IR reflection coefficient97

of the target surface. Once an object has been mod-98

elled and identified, its distance from the IR sensor can99

be obtained in successive readings, within 2 ms (typ-100

ical response time). Distance measurements with this101

sensor can vary from a few centimetres to 1 m, with102

uncertainties ranging from 0.1 mm for near objects to103

10 cm for distant objects, being typically 1.2 cm ob-104

jects placed at 50 cm. 105

The organisation of this paper is as follows:Section 106

2 describes the IR sensor and its main characteristics,107

in Section 3a simplified model with only one param-108

eter (reflectivity coefficientαi) is used to describe the109

sensor response as a function of distance and the an-110

gle of incidence.Section 4describes the expected er-111

rors in obtaining distance measurements using the IR112

sensor—expressed as a function of the reading noise,113

distance, and angle of incidence.Section 5describes 114

a simple and accurate method to estimate theαi pa- 115

rameter, using US data readings as a complementary116

source of information. Also, in this section the influ-117

ence of theαi parameter on the estimated distance is118

studied. Finally, inSection 6, the results obtained from119

several validation tests are described and discussed.120

2. Description of the IR sensor 121

The IR sensor has been developed as a part of122

a mobile robot prototype called YAIR1 . This robot 123

is a multi-sensor prototype being developed for re-124

search in several issues related with real-time dis-125

tributed systems. YAIR has two main types of sen-126

sors for map-building and object location: an US ro-127

tary sensor placed on top, and a ring of 16 IR sen-128

sors distributed in eight pairs around the perimeter of129

the robot, as shown inFig. 1. Each pair of sensors130

is centred at each edge of the octagon, with 15 cm of131

separation between them. The sensitivity lobes (corre-132

sponding to 50% of amplitude response) are also rep-133

resented in this figure. The maximum detection range134

is approximately 1 m. The US sensor can measure dis-135

tances with a precision of less than 1 cm, and with an136

angular positioning resolution of 1.8◦. Response times137

vary from 15 ms for a single measurement to 2.5 s for138

a complete circular scan[2]. 139

The IR sensors of the YAIR robot are based on the140

direct measurement of the magnitude of the IR light141

that is back-scattered from a surface placed in front142

of the sensor. Assuming perfect diffuse behaviour of143

1 YAIR stands for Yet Another Intelligent Robot, and is currently
being developed under the grant CICYT TAP98-0333-C03-02 from
the Spanish government.
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Fig. 1. Layout of the YAIR infrared ring. Shadowed sectors show
the sensitivity lobes.

the surface, the signal amplitude received is not linear144

with the distance, and follows an inverse square law145

[6] that depends on the distance to the object, angle146

of incidence, and the reflectance of the surface.147

Each sensor consists of two highly directional IR148

LED emitters and one PIN photodiode with a plastic149

daylight filter housing. The IR LEDs are connected in150

series with a resistor and driven by a NMOS transistor151

that is activated using a TTL compatible logic signal.152

The total IR LEDs current is 100 mA during the ac-153

tivation of the emission. Only one of the 16 pairs of154

LEDs is activated at each time. The equivalent dia-155

gram for one sensor can be seen inFig. 2.156
The IR emitter has been chosen because it has157

a narrow half-angle (±10◦) and high radiant inten-158

Fig. 2. Equivalent diagram of a single IR sensor. The IR activation and the output signals are multiplexed.

sity (80 mW/sr at 100 mA). The receiver photodiode159

is a fast device and has good spectral sensitivity160

(50�A/(mW/cm2) at 900 nm), with a sensitive lobe161

of ±20◦. The combination of the emitter–receiver can162

detect and measure distances to targets placed up to163

1 m apart. 164

If an object is placed in front of the sensor, the165

reflected light reaches the photodiode, and the cor-166

responding photocurrent produces a voltage across a167

resistor placed in series with it. The voltage output168

of each one of the 16 sensors is multiplexed using a169

solid-state, low on-resistance, precision analogue mul-170

tiplexer. This multiplexed voltage is amplified by a171

precision amplifier with adjustable gain and offset,172

giving an output voltage that ranges from 0 V (no ob-173

ject) to 5 V (white target placed at 10 cm). As the am-174

plifier circuit uses±12 V DC voltage supply, the out-175

put is linear within the whole output range, and no176

saturation is produced in the output signal. This am-177

plified voltage is converted using a 10 bit semi-flash178

A/D converter with a total conversion time of 1�s. 179

3. Sensor model 180

The sensor output follows very closely the photom-181

etry inverse square law[6]. Thus, a simple equation182

can be used to model the sensor outputs(x, θ) as a 183

function of the distancex and the angle of incidence184

θ with the target surface: 185

s(x, θ) = α

x2
cosθ + β, (1) 186

whereα andβ are the model parameters. Theα pa- 187

rameter includes: the radiant intensity of the IR emit-
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ters, the spectral sensitivity of the photodiode, the gain188

of the amplifier, and the reflectivity coefficient of the189

target. The first three factors are constant, but the last190

factor is target dependent. Thus, the parameterα can191

be expressed as the product of two parameters,α0 and192

αi, being α0 constant for all the measurements and193

expressed in V m2, andαi, a dimensionless reflectiv-194

ity coefficient that can vary from 0 (black target) to 1195

(white target). This parameter can be expressed as196

α = α0αi. (2)197

Theβ parameter equals the amplifier’s offset plus am-198

bient light effect. It can be obtained by taking a read-199

ing without IR emission. Under these conditions, this200

reading will correspond with the value of the param-201

eterβ. A new reading is taken immediately after IR202

emission is activated. By subtracting the previous read-203

ing, a signal without offsetβ is obtained. Thus, the204

influence of all the light sources, even fluorescent or205

incandescent lights, can be removed. By naming this206

‘cleaned’ signal asy, Eq. (1)can be rewritten as207

y(x, θ) = s(x, θ) − β = α

x2
cosθ. (3)208

The influence of the angle of incidence is modelled209

in the above equations using the factor cosθ, assum-210

ing near-Lambertian perfect diffuse behaviour of the211

surfaces, following Lambert’s cosine law[6]. This as-212

sumption is invalid on some polished surfaces, but in213

our experience, most of the examined surfaces have214

shown satisfactory closeness to this law for angle val-215

ues in the range [−45◦, +45◦]. More complete mod-216

els such as the Phong model[8] can be used instead,217

but they require more parameters to define the model218

and more complicated procedures to obtain these pa-219

rameters.220

3.1. Model of the environment: Estimation of the221

angle of incidence θ222

The distance between the IR sensor and an object223

can be estimated from the value of the readingy, using224

Eq. (3), as follows:225

x =
√

α

y
cosθ =

√
α

y

√
cosθ. (4)

226

However, in real environments, the angle of incidence227

is a priori unknown. If an IR sensor detects the pres-228

ence of a target in its sensitivity zone, the first ap-229

proach is to suppose 0◦ as angle of incidence. Thus,230

the distance will be overestimated by a factor of cosθ. 231

The greater the angle of incidence, the greater is the232

error obtained in the distance estimation. This makes233

it unadvisable to use this data to build an environment234

map, and a method to estimate the angle of incidence235

must be used. As shown inFig. 1, the IR sensors are236

grouped into eight equally oriented pairs. Using the237

readings of one of these groups, a good estimate of238

the distancex and the angle of incidenceθ can be ob- 239

tained as follows. 240

Fig. 3shows a schematic of a group of two IR sen-241

sors, measuring a flat surface with an angle of inci-242

denceθ. Each sensor amplifies and measures the val-243

ues of the signalsy1 andy2. As the angle of incidence244

is unknown, false estimatesx′
1 andx′

2 for each distance245

are obtained assumingθ = 0◦ as a first approach: 246

x′
1 =

√
α

y1
, x′

2 =
√

α

y2
. (5)

247

To simplify subsequent expressions, the ratiosR and 248

R′ are defined as follows: 249

R = x1 − x2

L
, R′ = x′

1 − x′
2

L
(6) 250

and, fromFig. 3, the following expression can be writ-251

ten to obtain the apparent angle of incidenceθ′: 252

tanθ′ = R′. (7) 253

This angleθ′ is close to, but is not, the true angle254

of incidenceθ. As shown inFig. 3, the true angle of 255

incidence can be expressed as 256

tanθ = R, (8) 257

and fromEq. (4), the following relationships can be258

established: 259260

x1 = x′
1

√
cosθ, x2 = x′

2

√
cosθ, 261

R = R′√cosθ. (9) 262

Now, using these relationships,Eq. (8) can be 263

re-written as 264

tanθ = R′√cosθ. (10) 265

Therefore, to obtainθ, the following equations must266

be solved: 267

(R′)2cos3 θ + cos2 θ − 1 = 0. (11) 268
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Fig. 3. Diagram for the angle of incidence estimation using two equally oriented IR sensors.

This implies solving a cubic equation in cosθ, whose269

solution can be found in numerous maths books, but270

its exact solution implies a large amount of calculus.271

A faster approach can be used instead. Notice that in272

the above reasoning, the goal is to obtain the value273

of θ from the value of the ratioR′ calculated from274

the readings, and this implies solving a cubic equation275

(11). However, if the goal were to obtainR′ from θ,276

the solution would be trivial, re-writing the previous277

equation (10) as follows:278

R′ = tanθ√
cosθ

. (12)
279

Using the above equation (12), a set of values ofR′280

can be obtained from a set of values ofθ, thus obtain-281

ing a set of pairs (R′, θ) that can be used as a look-up282

table to computeθ by means a of simple linear in-283

terpolation. Alternatively, if an algebraic equation to284

obtainθ is preferred, it is a simple matter to adjust the285

above-mentioned set of pairs (R′, θ) to an expression286

in the form:287

θ = aR′ + bR′3. (13)288

In Fig. 4, a set of 100 pairs of values (R′, θ) has been289

plotted, corresponding with values ofθ in the interval290

[−45◦, 45◦]. This set of values has been adjusted us-291

ing least-squares fit to determinea andb in Eq. (13),292

yielding the following results:a = 53.345441,b =293

−11.905434, with a standard error of 0.5830191◦,294

and a correlation coefficient of 0.9997581. (Note295

that only angles between−45◦ and 45◦ are of in- 296

terest for this study, given that the octagonal layout297

of the IR ring of YAIR makes it difficult to obtain 298

greater angles of incidence within the range of 1 m of299

distance.) 300

After the estimation of the angle of incidence, it is301

now possible to obtain the compensated distancesx1 302

andx2, using the following formula: 303

x1 = x′
1

√
cosθ, x2 = x′

2

√
cosθ, (14) 304

and the mean distancex can be calculated as follows:305

x = 1

2
x1 + x2 = 1

2
x′

1 + x′
2

√
cosθ. (15) 306

4. Sources of error in distance estimates 307

Eq. (4)can be used to obtain an estimate of the dis-308

tancex from the sensor reading (y), the angle of inci- 309

dence (θ), and the reflectance coefficient of the target310

(αi). Uncertainty in any of these values will produce311

uncertainty in the distance estimate. Assuming thatαi 312

is a parameter that can be estimated with sufficient313

precision (using other available sensory data, as ex-314

plained later), the main sources of error are the noise315

in the measurementεy and the uncertainty in the angle316

of incidence,εθ. Thus, namingεxy as the error com- 317

ponent caused by the noise in the readingεy, andεxθ 318

as the error component due to the error in the angle319

of incidence estimation, the following equation can320
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Fig. 4. Plot of the values of the angle of incidenceθ as a function of the ratioR′.

be written:321

εx = εxy + εxθ = ∂x

∂y
εy + ∂x

∂θ
εθ. (16)

322

and taking partial derivatives with respect toy andθ323

in Eq. (4), the following expressions can be obtained324

for the uncertainty of the estimate of the distanceεx:325

εxy = − x3

2α cosθ
εy, (17)326

εxθ = −x

2
tanθεθ, (18)327

εx = − x3

2α cosθ
εy − x

2
tanθεθ. (19)328

Assuming thatεy andεθ are zero-mean, Gaussian, and329

uncorrelated noises with standard deviationsσy and330

σθ, respectively, the standard deviation of the total331

uncertainty can be expressed as332

σx =
√(

x3

2α cosθ
σy

)2

+
(x

2
tanθ σθ

)2
. (20)

333

Some considerations on the magnitude of the errors334

produced in the distance estimation and their relation-335

ships are described below.336

4.1. Uncertainty εy in the readings 337

The value of the readingy includes a noiseεy 338

that is mainly due to the quantisation noise plus the339

amplification noise. It can be assumed that this noise340

is zero-mean and Gaussian. In the following discus-341

sion, normal incidence white targets are assumed342

(cosθ = 1 and αi = 1). Under these restrictions,343

and taking absolute values,Eq. (17)can be rewritten 344

as 345

εxy0. = x3

2α
· εy. (21) 346

This shows that the uncertaintyεxy0 in the distance es-347

timation grows quickly with the cube of the distancex, 348

and is inversely proportional to the parameterα. This 349

relationship can also be used to evaluate the distance350

xmax that will produce a given maximum error in the351

distance estimate (εxymax). Naming xmin as the dis- 352

tance that produces the full-scale reading (ymax) when 353

a white target (αi = 1, α = α0) is used, the following 354

expression can be obtained fromEq. (4): 355

xmin =
√

α0

ymax
, (22)

356
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and the value ofα0 can be obtained as357

α0 = x2
minymax (23)358

and substitutingEq. (23) for Eq. (21)and resolving359

xmax, it is finally possible to obtain for a white target360

and zero angle of incidence, the value of the maximum361

distance (xmax) measurable with a given uncertainty362

(εxymax):363

xmax = 3

√
2x2

minεxymax

εy/ymax
. (24)

364

Under the assumption that the quantisation error is365

the main part of the noiseεy, the termεy/ymax can366

be viewed as the effective resolution of the A/D367

converter. Thus, the full-scale rangexmax of the sen-368

sor will be a compromise between the acceptable369

error in distance estimation, the minimum distance,370

and the effective bits of the A/D converter. As an371

example, by taking 10 cm asxmin, 5 cm asεxymax,372

and a 10 bit converter,Eq. (24) gives a maximum373

range of about 1 m. In addition, if the A/D resolu-374

tion is 12 bit, then the maximum range obtained is375

1.6 m.376

However, it is necessary to point out that it is not377

possible to reduce the noise without limitation, as the378

amplification noise has a non-zero value. In fact, it379

is difficult to reduce the noise in the measurement to380

below 5 mV. For this reason, if the full scale reading381

(ymax) is 5 V, a 10 bit A/D converter seems to be a382

good choice.383

4.2. Uncertainty in the angle of incidence384

FromEq. (4), it is evident that the angle of incidence385

plays an important role in distance estimation. The386

uncertaintyεθ in the value of the angle of incidenceθ387

produces an errorεxθ in the distance estimate that has388

been expressed inEq. (17).389

The above described method to obtainθ has been390

based on the readingsy1 andy2 and therefore, is af-391

fected by the uncertainty on these values caused by392

noiseεy. Thus, fromFig. 3, the following expression393

can be written to obtain the relationship betweenεθ394

andεy:395

tan(θ + εθ) = (x1 + εx1y) − (x2 + εx2y)

L
, (25)396

and from the relationship betweenεxy and εy ex- 397

pressed inEq. (21), the following expression can be398

obtained: 399

tan(θ + εθ) = tanθ + x1
3

2αL
εy1 − x2

3

2αL
εy2. (26) 400

Moreover, taking into account the additive na-401

ture of noise and assuming thatεy1 and εy2 are 402

non-correlated, with the same varianceσy
2, the fol- 403

lowing expression can be obtained for the standard404

deviation of the angular noise: 405406

σθ = arctan
(
tanθ + σy

2αL cosθ

√
x1

6 + x2
6
)

− θ. 407

(27) 408

Note that in the above expression,x1 andx2 can also 409

be expressed as a function of the mean distancex̄ = 410

(x1 + x2)/2 as follows: 411

x1 = x̄ + 1

2
L tanθ, x2 = x̄ − 1

2
L tanθ. (28) 412

4.3. Total error in the distance estimation 413

In Eq. (20)the expected standard deviation in dis-414

tance estimation has been expressed as a function of415

the standard deviation of the reading errorσy, the an- 416

gular errorσθ, the distancex, and the angle of inci- 417

denceθ. Moreover,Eq. (27) shows the relationship418

betweenσθ and σy. Thus, for a givenσy, the ex- 419

pected error obtained in the distance estimation can420

be modelled usingEqs. (20) and (27), and will ulti- 421

mately depend on the mean distancex̄, and the an- 422

gle of incidenceθ. As an example, inFig. 5, the val- 423

ues of the standard deviation of the error predicted by424

this model corresponding to a value ofσy = 6 mV 425

have been plotted (this is the value obtained in the426

real measurements for the prototype examined), for427

distances ranging between 10 cm and 1 m and for an-428

gles of incidence between−45◦ and +45◦. As can 429

be seen inFig. 5, the minimum standard deviation of430

errors are produced with zero angle of incidence—431

being 6 cm at 1 m of distance, 1 cm at 55 cm, and432

0.5 cm at 20 cm. This error increases with the an-433

gle of incidence and reaches 12.5 cm for±45◦ at 434

1 m. 435
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Fig. 5. Standard deviation of the distance measurements predicted by the model described as a function of the mean distance to a surface
and the angle of incidence.

5. Modelling the objects in the scene: Estimation436

of the αiiiαiiiαiii parameter437

In the previous section, a priori knowledge ofα0438

andαi are assumed. Asα0 is constant for each sensor439

and can be calculated usingEq. (23), the only param-440

eter to be determined isαi (the relative IR reflectivity441

coefficient of the surface). To determine its value one442

must have additional sensory data. If US sensors are443

available, as is the case of YAIR, it is easy to obtain444

reasonably good values forαi. The method is simple:445

once a new object is localised, normal incidence is446

reached by means of rotation of the robot (the normal447

incidence is obtained when the readings of the two448

IR sensors are of the same value). Then, the US dis-449

tance value (x) is estimated with sufficient precision.450

An estimate ofαi can be obtained using the following451

equation:452

αi = ȳx2

α0
, (29)

453

wherex is the value of the distance measured with the454

US sensor, and̄y is the mean value of the readings455

taken from both IR sensors. Note that to obtain rea-456

sonable accuracy it is necessary to reduce the noise in-457

fluence by taking sufficient readings from IR sensors.458

It is also preferable that the object is placed within a459

distance of 20 and 50 cm.460

5.1. Effects of uncertainty in αi 461

Throughout this paper, an exact knowledge of the462

value of αi is assumed, and a suitable method has463

been described to obtain its value using US data. How-464

ever, it can be of interest to study the dependence of465

the uncertainty on the distance estimates as a func-466

tion of the uncertainty inαi In practical situations, 467

during a robot walk, single dark surfaces with un-468

known values ofαi can be reached. Under these con-469

ditions, this object will be classified as too distant to470

collide. 471

In a real scene, values ofαi can greatly vary, mean-472

ing that typical relative errors inαi can reach up to 473

±40% if no method—such as that described in this474

paper—is used to measure them. This is the case of a475

surface withαi = 0.7, but with a value ofα′
i = 1 or 476

α′
i = 0.4 being used instead. Thus, a derivative-based477

method to obtain the error in distance estimates as a478

function of the uncertainty inαi will not be applica- 479

ble in this case. In the following paragraphs, the error480

produced in the distance estimates is expressed as a481

function of the uncertainty inαi. Also, for this analy- 482

sis, it is assumed that noiseεy equals 0. 483

Let us suppose that a surface with a reflectivity co-484

efficient αi, is irradiated with a pair of robot IR sen-485

sors. Assuming, as a first approach, that the angle of486

incidence is 0, the same readingy will be obtained 487
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from each sensor:488

y = α0αi

x2
, (30)489

and, if an erroneousα′
i is supposed, a false distance490

estimatex′ will be obtained instead:491

x′ =
√

α0α
′
i

y
. (31)

492

Thus, using the previous equations (30) and (31), the493

following equations can be obtained:494

x′ = x

√
α′

i

αi

, (32)
495

and by naming the uncertainty inαi asεα = α′
i − αi,496

the uncertainty in distance measurementsεxα can be497

expressed as a function of uncertaintyεα as follows:498

εxα

x
= x′ − x

x
=

√
εα

αi

+ 1 − 1. (33)
499

As a rule of thumb, the previous equation indicates that500

the relative error obtained in the distance estimation is501

approximately half the relative error in the estimated502

αi. In effect, a relative error of 20% inαi produces503

approximately 10% of error inx (that is, 10 cm in 1 m).504

Note that the sign of errors inαi is the same as errors505

in x.506

The aboveEq. (33)does not take into consideration507

the influence of the angle of incidenceθ. This issue508

is to be faced in the following analysis. Assuming509

an angle of incidenceθ with the irradiated surface,510

and using the previousFig. 3, Eqs. (30)–(32)can be511

re-written. Thus, the readings obtained for each sensor512

will be the following:513

y1 = α0αi

x1
2

cosθ, y2 = α0αi

x2
2

cosθ, (34)
514

and the non-compensated distance estimates (assum-515

ing an erroneousα′
i) can be expressed as516

x′
1 =

√
α0α

′
i

y1
, x′

2 =
√

α0α
′
i

y2
. (35)

517

From these values, a false estimateθ′ will be obtained,518

and following the method described inSection 3.1to519

determine the true angleθ, the compensated value ofθ520

will be obtained usingEq. (13). This procedure is not521

entirely correct, as the method described inSection522

3.1 assumes a previous knowledge ofαi, but it still 523

gives sufficiently good results for this case. 524

Finally, usingEq. (15), an estimate for the mean525

distancex can be obtained. Given the nature of equa-526

tions involved in this calculus, it is rather difficult to527

obtain an analytical expression for the error in distance528

estimation as a function of the distance using the de-529

scribed method. Instead, it is easier to plot a graphic530

representation of the error dependence with the angle531

of incidence. InFig. 6, a family of curves showing the532
dependence of the absolute distance error values with533
the incidence angleθ and the relative errorεα/αi has 534
been plotted. InFig. 6, the mean distancex is 1 m, 535
and the angle of incidenceθ ranges between+40◦

536
and−40◦. As expected, the error values correspond-537
ing with θ = 0◦ are the same as that obtained when538
using Eq. (33). Also, Fig. 6 shows that the angle of539
incidence has little effect on the error obtained in the540

distance estimation using the above described method,541
and the worst case isθ = 0◦. 542

As a conclusion for this study, the effect of uncer-543
tainty in the value ofαi can be roughly modelled using544
Eq. (33), and ignoring the influence of the angle of545
incidence on this error. Also, from the same equation,546
the tolerable uncertainty in the estimatedαi can be ob- 547
tained for a given error in distanceεxα. Note that this 548
error is independent and uncorrelated with the read-549

Fig. 6. Plot of the absolute error in distance estimates as a function
of the angle of incidenceθ and the relative error inαi. The mean
distancex used in this plot is 1 m.
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ing noiseεy. Thus, the total variance of the errors in550
distance measurement using the IR sensor will be ob-551
tained by adding the variances of the different sources552
of uncertainty described in this paper.553

6. Experimental tests and model validation554

The experiments were carried out using the frontal555
pair of IR sensors on a ring of the YAIR robot, whose556
layout has been previously described. The robot was557
programmed to follow a straight path in steps of558
5.15 cm, ranging from 13.4 to 116.8 cm towards a559
Canson-type DIN A2-sized white cardboard. All the560
sensors were previously adjusted to give a full-scale561
reading (5 V) at 10 cm from the same white card562
with θ = 0◦. Thus, the value of the parameterα0 for563
an adjusted sensor is 50.0 mV/m2, assumingαi = 1564
for the white card. From each of the 21 points, 100565
readings were taken. Each measurement was taken566
in two phases: a first reading without IR emission567
(β parameter estimation), immediately followed by a568
reading with IR emission. The resolution of the A/D569
converter was 10 bit and the total time spent on the570
two consecutive readings was 2 ms. The precision in571
thex positioning of the robot was better than 0.5 mm.572

Fig. 7. Plot of the readings obtained from a single prototype IR sensor as a function of the distance of the white target. Each filled dot
represents the average value of 100 readings taken from the same distance. The continuous line is the theoretical curve of the model
expressed inEq. (3), with α = 50 mV/m2.

Table 1
Experimental values ofαi for several surfaces

Material description Relative IR reflectivity (αi)

White cardboard 1.00
Yellow cardboard 0.99
Red cardboard 0.98
Light blue cardboard 0.97
Light green cardboard 0.94
Cyan cardboard 0.91
Light grey cardboard 0.90
Brown cardboard 0.78
Wooden panel 0.77
Red brick wall 0.61
Medium grey cardboard 0.59
Concrete wall 0.53
Black cardboard 0.12

In Fig. 7, the average of the 100 readings taken from573
each position, belonging to a single IR sensor, have574
been plotted. This figure shows that they follow very575
closely the theoretical curve modelled byEq. (3)with 576
α = 50 mV/m2. In fact, the RMS error between these577

averaged points and the theoretical curve was only578
2.3 mV, a value below the individual reading noise579
(6 mV). This indicates that the proposed equation (3)580
can be used to model the IR sensor output with suffi-581
cient precision. 582
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Fig. 8. Plot of the total RMS error surface obtained in the distance estimation for each of the 21×7 different locations varying the distance
and the angle of incidence, and taking 100 readings from each point.

Also, different materials and surfaces were tested583

to prove the validity of the model, and similar results584

were obtained. In these tests, the value of the rela-585

tive reflectivity (αi parameter) of each material has586

been previously obtained usingEq. (29). The values587

of αi for different materials are listed inTable 1. As588

can be seen, surface colour does not significantly alter589

the reflectivity values. In fact, almost all the coloured590

Canson-type cards show similar values forαi.591

To test the ability of the model to predict the an-592

gular response and the total estimation errors, similar593

experiments with the same white target were carried594

out, but for the following angles of incidence: 45, 30,595

15, 0,−15,−30 and−45◦. Using the above described596

procedure, the angle of incidenceθ and the mean dis-597

tancex from each pair of readingsy1 and y2 were598

estimated usingEqs. (13) and (15), obtaining 100 es-599

timates for each of the 21 different positions of the600

robot and for each of the indicated values ofθ.601

With this set of estimates, the RMS error surface602

was obtained and plotted inFig. 8. As can be seen,603

this RMS error surface shows values similar to those604

predicted inFig. 5 by the proposed model. However,605

it must be pointed out that these satisfactory results606

were obtained using a Canson paper that exhibits a607

near-Lambertian diffuse behaviour. On more polished608

surfaces, the results are poor with large angles, but609

good results can still be obtained by reducing the max-610

imum angle of incidence. 611

7. Conclusions 612

In this paper, a new IR sensor based on the light613

intensity back-scattered from objects and able to mea-614

sure distances of up to 1 m has been described. Also,615

a simplified expression is proposed for modelling the616

sensor response as a function of distance and angle of617

incidence. From this expression, the expected errors618

in distance estimates are analysed and modelled. 619

The proposed model uses only one parameter: the620

reflection coefficient,αi. This approach gives satisfac-621

tory results for most surfaces. A simple method to es-622

timate thisαi parameter has also been presented, using623

US data as a complementary source of information.624

Also, the influence of uncertainty on the exact value625

of the relative reflectivity coefficientαi has been anal-626

ysed, and an expression has been found to give a rough627
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estimate of the error produced in the distance estima-628

tion.629

Finally, the experimental results obtained show630

good agreement between the model and the real data631

obtained in the validation tests. Thus, this new sensor632

can be used in mobile robots to build reasonably accu-633

rate maps within real time constraints, given the fast634

response time of the IR sensor. Also, as an additional635

advantage of this sensor, each distance measurement636

can be obtained together with its expected uncertainty,637

enabling more accurate maps to be produced using638

simple sensor fusion techniques.639
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