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Chapter 1

Box-Muller Transformation
Method

The first method we will be using to generate observations from a normal
distribution is the Box-Muller Transformation Method[3]. In order to do
so we will be looking at a bivariate density function which is made up of
two1 independent and identical normal distributions giving us the picture
shown in figure 1.1 on page 5. Looking at the contour diagram at the top
of the figure, we see that the distribution is made up of circles2 stacked on
top of each other, each with a radius corresponding to a certain density.
Using the Pythagorean Theorem[3, 1, 2] on just one of the contour circles
(see footnote 2 on page 1) we see that R2 = X2 + Y 2. Assuming that
X, Y

iid∼ N(0, 1), we now determine the distribution of R2.

R2 = X2 + Y 2 (1.0.1)
∼ χ2

1 + χ2
1 (1.0.2)

d= χ2
2 (1.0.3)

Proof that a normal distribution squared (the transition between equation
1.0.1 and equation 1.0.2) can be found in section 1.1. Likewise, proof that
the sum of two χ2

1 is a χ2
2(as shown from equation 1.0.2 to equation 1.0.3)

can be found in section 1.2.

α =

(
3

∫ π
−∞ xdx

∏θ
i=1 x2

)
Γ (1.0.4)

From this we see that R2 is distributed χ2
2. It turns out that using the

transformation Y = −2 ln U1 where U1 ∼ U(0, 1) gives Y ∼ χ2
2.

1Two is considered by most to be twice one. Some would write this as 2 = 2 × 1 or
2 = 1 + 1.

2Yeah, the package even does nice footnotes.

1



For proof of this see section 1.3.

Because R2 ∼ χ2
2 and Y = −2 lnU1 are similarly distributed we are

able to substitute R2 d= −2 ln U1. From this, we see that we can use
R =

√−2 lnU1 to generate a random radius from a uniform.
Now we need to randomly generate an angle. We know that the angles that
generate a circle can be viewed as being uniformly distributed on (0,2π).
Factoring out a 2π we see that we can generate a random angle by multi-
plying 2πU2, where U2 ∼ U(0, 1).
The final step of this transformation is to convert from polar coordinates
back to cartesian coordinates. We see that:

X = R cos(2πU2)
=

√
−2 ln(U1) cos(2πU2) (1.0.5)

Y = R sin(2πU2)
=

√
−2 ln(U1) cos(2πU2) (1.0.6)

where U1, U2
iid∼ U(0, 1) as above. The resultant X and Y are iid N(0, 1).

1.1 Squaring a Normal Distribution

Suppose we have X ∼ N(0, 1). Let Y = X2, then the cumulative distribution
function of Y is:

FY (y) = P(Y ≤ y)
= P(X2 ≤ y)
= P(−√y ≤ X ≤ √

y)
= FX(

√
y)− FX(−√y)

(1.1.7)

The density function for Y is:

fY (y) =
d

dy
FY (y)

=
d

dy
(FX(

√
y)− FX(−√y))

=
1
2
y−

1
2 (fX(

√
y) + fX(−√y))

= y−
1
2 fX(

√
y)

=
y−

1
2

2
1
2 Γ(1

2)
e−

y
2 (1.1.8)

Comparing the distribution to those in table 3.1 on page 11 we see that the
density given in equation 1.1.8 is that of a χ2

1.
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1.2 Addition of Chi-Squares

Consider the independent random variables X ∼ FX(x) and Y ∼ FY (y)
Looking at their moment generating functions we see that:

MX(s) = E(esX)
MY (s) = E(esY )

MX+Y (s) = E(es(X+Y ))
= E(esX · esY )
= E(esX) · E(esY )
= MX(s) ·MY (s) (1.2.9)

Extending the above to the independently and identically distributed ran-
dom variables X1, X2, ..., Xn we have

MΣXi(s) = MX1(s) ·MX2(s) · ... ·MXn(s) = MX(s)n

Applying this to the addition of X, Y
iid∼ χ2

1 we get:

MX(s) = (1− 2s)−
1
2

MY (s) = (1− 2s)−
1
2

MX+Y (s) = (1− 2s)−
1
2 · (1− 2s)−

1
2

= ((1− 2s)−
1
2 )2

= (1− 2s)−
2
2

which is the moment generating function of a chi-square on two degrees of
freedom.

1.3 Uniform to Chi-Square

The following section is a proof that if X has a standard uniform distri-
bution, then −2 ln(X) has a χ2

2 distribution. Suppose X ∼ U(0, 1) and
Y = −2 ln X. Then

FY (y) = P(Y ≤ y)
= P(−2 lnX ≤ y)

= P(lnX ≥ −y

2
)

= P(X ≥ e
−y
2 )

= 1− P(X ≤ e
−y
2 )

= 1− FX(e
−y
2 )

= 1− e
−y
2 (1.3.10)
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The density function corresponding to FY (y) in equation 1.3.10 is:

fY (y) =
d

dy
(1− e

−y
2 )

=

{
1
2e

−y
2 y > 0

0 else
(1.3.11)

Looking up equation 1.3.11 in table ?? on page 11 we see that Y ∼ χ2
2.
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Figure 1.1: The bivariate normal distribution.
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Chapter 2

Uniform Summation Method

Another way of generating normal random numbers using the uniform dis-
tribution is based on the expected values and the variances of the uniform
and normal distributions. Using table 3.1 on page 11 we see that if U ∼
U(0,1), then

E(U) =
0 + 1

2
= 0.5

and

V ar(U) =
(2− 1)2

12

=
1
12

If the U(0,1) random variables are independent, then when we sum multiple
distributions we are able to sum the variances. The Central Limit Theorem
states that for Xi iid with their E(Xi) = µ and V ar(Xi) = σ2, then for n
“sufficiently large”

∑
Xi ∼ N(n ∗µ, n ∗σ2). Using this and the information

above, we see that

12∑

i=1

Xi ∼ N(
12∑

i=1

µ,
12∑

i=1

σ2)

= N(
1
2

+ ... +
1
2
,

1
12

+ ... +
1
12

)

= N(6, 1)

So we have a Normal distribution with a standard deviation of one but it
is centered around the mean of 6. In order to move these values so they
are centered around 0 we just horizontally shift them by subtracting 6.
Therefore

∑12
i=1 Ui − 6 ∼ N(6, 1) − 6 d= N(0, 1) gives us a second way to

generate the standard normal random deviates.
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Chapter 3

Simulations & Evaluation

In order to evaluate both the Box-Muller Method and the Uniform Summa-
tion Method, histograms of 10,000 random numbers were generated using
both methods and a histogram for each set was made. Looking at these
histograms (figures 3.1 and 3.2), it appears as though both methods in fact
generated normal random numbers. For a closer look we examine quantile
plots as well as normal tests of the generated data.
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Figure 3.1: A histogram of 10,000 random numbers generated using the
Box-Muller Method.
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Figure 3.2: A histogram of 10,000 random numbers generated using the
Uniform Summation Method.

3.1 Normal Quantile Plots

In order to generate normal quantile plots, first the normal distribution
function is produced by numerically finding the antiderivative of the normal
density function. Then both the normal distribution function and the tested
data are plotted. The “y” is then cut evenly into n slices and the “x”’s for the
same “y” ( 1

n , 2
n , ..., n

n) are plotted against each other. This should result in
a straight line and because we are generating standard normal observations
it should be the line that goes through the origin and has slope one.
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Figure 3.3: Normal quantile plot of random standard normals generated
using the Box-Muller transformation.

Looking at the Q-Q Norm Plots in figures 3.3 and 3.4 we see that the
bulk of the data is in fact normally generated with the exception of a few
outliers in the tails.
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Figure 3.4: Normal quantile plot of random standard normals generated
using the summation method.

3.2 The Nortest Package

The nortest package is a group of functions that are coded in R that can be
used to test the normality of a set of observations. The five tests include
the Anderson-Darling test, the Cramer-von Mises test, the Lilliefors test,
the Pearson test, and finally the Shapiro-Francia test. All of these tests
generate p-values that can be compared to a certain significance level. That
is, if on a set of data the p-value given is less than the level we are testing
then the data is said to be not normal. The following tables are computed
by running 1 million repetitions on 1000 number data sets. The simulation
was carried out using both methods. At each significance level, the same
percentage or less of the million repetitions should be rejected in order to
“pass” the test.
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P-Value Anderson-Darling CVM Lillie Pearson Shapiro-Francia
0.1% 0.001142 0.000939 0.000982 0.001196 0.000258
1% 0.011504 0.011247 0.009566 0.010951 0.005028
5% 0.056824 0.056398 0.050511 0.053592 0.035301
10% 0.112563 0.110138 0.109843 0.105965 0.078413

Table 3.1: Summation Method results

P-Value Anderson-Darling CVM Lillie Pearson Shapiro-Francia
0.1% 0.000999 0.000869 0.000926 0.001055 0.001025
1% 0.009868 0.009932 0.009018 0.010417 0.010915
5% 0.049439 0.050138 0.047603 0.051424 0.052324
10% 0.099456 0.099500 0.103908 0.102144 0.102377

Table 3.2: Box-Muller Transformation method results.

As you can see in Table 3.1 the summation method failed almost every
test except for the Shapiro-Francia Test, whereas Table 3.2 show that the
Box-Muller Transformation Method passed every test except for the Shapiro-
Francia.

3.3 Conclusion

Looking at histograms and normal probability plots it appears that both
methods generate pseudo-random normal data. However, looking more
closely at the data, with the help of normality tests we see that the Box-
Muller Transformation Method is for more efficient in generating normal
data. The Summation Method failed all but the Shapiro-Francia Test which
leads us to question the validity of the method.
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Appendix A

First

The computation of returns:

function (x = BNCCquotes) {
n <- dim(x)[1]
x[3:n, "Open.Log"] <- log(x[2:(n - 1), "Open"]/x[3:n, "Open"])
x[3:n, "Close.Log"] <- log(x[2:(n - 1), "Close"]/x[3:n,

"Close"])
x

}

The computation of volatility:

function (x = BNCCquotes) {
x <- stocklog(x)
x.close <- sqrt(var(x[, "Close.Log"], na.method = "omit"))
x.open <- sqrt(var(x[, "Open.Log"], na.method = "omit"))
x <- c(x.open, x.close)
names(x) <- c("Open", "Close")
x

}
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Appendix B

Second

The computation of returns:

function (x = BNCCquotes) {
n <- dim(x)[1]
x[3:n, "Open.Log"] <- log(x[2:(n - 1), "Open"]/x[3:n, "Open"])
x[3:n, "Close.Log"] <- log(x[2:(n - 1), "Close"]/x[3:n,

"Close"])
x

}

The computation of volatility:

function (x = BNCCquotes) {
x <- stocklog(x)
x.close <- sqrt(var(x[, "Close.Log"], na.method = "omit"))
x.open <- sqrt(var(x[, "Open.Log"], na.method = "omit"))
x <- c(x.open, x.close)
names(x) <- c("Open", "Close")
x

}
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Appendix C

Glossary

Widget Something small and useless.

Widgets A collection of widgets. A bunch of small and useless items. This is
just supposed to run on until it goes to a second line to show you how
it will look.
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