Rao-Blackwell

Theorem 1.1 Let X ~ fx(x,0) and T be sufficient for 0, x € X andt € T. Let U be any unbiased estimator
for g(0). Define V; = E(U|T = t). Then V is an unbiased estimator for g(0) and Var(V) < Var(U) with
equality iff V= U with probability one.

Proof 1.1 Since U = U(X) is an estimator, it is also a statistic. And, since T is sufficient for 6 we have
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By Fisher, and noting that u(zx) is a function of x and not 6, we see that V is 0-free. Thus, V is a statistic
as well.

Further,
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So, V is unbiased.
Now,
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Since we know that E(U) = E(V) by above,
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and thus
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with equality iff E (U — V)?) =0 or V.= U with probability one.



Example 1.1 Let X; w N(u,a%) so that @ = p. By exponential family we see that T = Y"1 | X; is min

suff for 0 = p.

Let U = Xy with E(U) = E(X;) = u. Thus, U is an unbiased estimator for 6 with variance Var(U) =
Var(X;) = 03.

Note that T =1 | X; =U+ Y., and that
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where U ~ N(p,02), T ~ N(np,nod), and T|U ~ N ((n— 1)u+u, (n—1)03). Hence
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So, U|IT ~ N(%,2=162) and thus
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with E(V) = E(X) = pu and Var(V) = Var(X) = % . Note that %‘% — 0 as n — oo which is better than

Var(U) = o unless n =1, in which case V =U.



