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1 Loading R Packages

While R itself is powerful, the use of packages makes it even more so. By using code
generated by others and not having to reinvent the wheel, the user can save a lot of
time.

Packages must first be installed from a CRAN or other source. Although periodic
updating is suggested, once the R workspace is saved reinstallation is not necessary.

> ##install.packages can be used in place of the R-gui

> #install.packages("xtable")

> ## load a few helpful packageslibrary(lattice)

> library(Rcmdr)

> library(Hmisc)

> library(xtable)

> library(ggplot2)

> library(survival)

2 Data Entry

Data may be entered into R in a number of ways. Three commonly used methods
will be discussed.

2.1 Manual Entry

Perhaps the easiest way to enter small datasets is to enter each variable indvidually
and then combine them into a data frame. Using the data from BPS5 problem 4.9,
this might look like:

> sex = c(rep("Female",12),rep("Male",7))

> mass = c(36.1, 54.6, 48.5, 42.0, 50.6, 42.0, 40.3, 33.1, 42.4,

+ 34.5, 51.1, 41.2, 51.9, 46.9, 62, 62.9, 47.4, 48.7, 51.9)

> rate = c(995, 1425, 1396, 1418, 1502, 1256, 1189, 913, 1124, 1052,

+ 1347, 1204, 1867, 1439, 1792, 1666, 1362, 1614, 1460)

> gender = c(rep(1,12),rep(2,7))

> bps5.4.9 = data.frame(sex, mass, rate, gender)
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We can now check to see if the data frame has been created by entering

> ls()

[1] "bps5.4.9" "gender" "mass" "rate" "sex"

Note that the listing also shows the individual variables that were used to create the
data frame. These can be deleted by using rm().

> rm("sex", "mass", "rate", "gender")

> ls()

[1] "bps5.4.9"

The attributes of the data frame and some summary statistics can be computed using
the attributes and summary functions.

> attributes(bps5.4.9)

$names

[1] "sex" "mass" "rate" "gender"

$row.names

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

$class

[1] "data.frame"

> summary(bps5.4.9)

sex mass rate gender

Female:12 Min. :33.10 Min. : 913 Min. :1.000

Male : 7 1st Qu.:41.60 1st Qu.:1196 1st Qu.:1.000

Median :47.40 Median :1396 Median :1.000

Mean :46.74 Mean :1370 Mean :1.368

3rd Qu.:51.50 3rd Qu.:1481 3rd Qu.:2.000

Max. :62.90 Max. :1867 Max. :2.000

Notice that while sex was treated as a categorical variable, gender was treated as if
it was cardinal. R is smart in that it recognizes the difference between cardinal and
categorical (which it calls “factor”) variables. To make gender a factor variable we
can enter

> bps5.4.9$gender = factor(bps5.4.9$gender,levels=c(1,2),

+ labels=c("F","M"))

Using summary we can see that gender is treated as a factor, or categorical, variable.
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> summary(bps5.4.9)

sex mass rate gender

Female:12 Min. :33.10 Min. : 913 F:12

Male : 7 1st Qu.:41.60 1st Qu.:1196 M: 7

Median :47.40 Median :1396

Mean :46.74 Mean :1370

3rd Qu.:51.50 3rd Qu.:1481

Max. :62.90 Max. :1867

2.2 Using Rcmdr

The package Rcmdr allows us to import data created in a number of packages. While
the Windows version of R will import Excel (.XLS) files, the Mac version of R does
not. However, both versions will import SPSS transport files.

To use Rcmdr we first need to load the package. This can be accomplished using
menus or by using the library function. Assuming that Rcmdr is installed we enter

> library(Rcmdr)

If everything is working correctly, the Rcmdr GUI interface should start. After select-
ing Data – Import Data – from Excel, Access, or dBase data set, R will ask
us for a name for our data set. Enter something descriptive but easy to type (e.g.
HtWt). Remeber that R is case sensitive.

Next, you will have to select the Excel file that contains your data. R will then
ask which sheet in the Excel file you wish to import. Once you have selected a sheet,
R will complete the import and the data set/frame will be created.

Rcmdr will indicate that the data frame has been created and selected by showing
Data set: HtWt above the script window. You can now view the data by clicking
on View data set.

Noting that the Group variable (which is really a sex variable) is coded as a
numeric (1 or 2), we should probably recode it as a factor variable. Rcmrd makes this
easy. Click on Data – Manage variables in active data set – Convert numeric

variables to factors. Select the variable we wish to change — in this case Group.
We will supply level names and use the same variable for the factor recoding. Click
on OK. We are going to overwrite Group so click on Yes. In this case a 1 is a Male
and a 2 is a Female. Once the level names have been entered, click on OK.

Clicking on View data set we see that the Group variable is now coded as Female
and Male. R now recognizes Group as a factor/categorical variable.

Data that is stored in SPSS portable or save formats can be imported in a similar
manner. The files that come with BPS5e are actually in the portable format so you
can use the menus to create a new data frame.

2.3 Reading Comma Seperated Value (CSV) Files

R has a utility for reading comma seperated value (CSV) ascii files. These files can
reside on the host machine or on a server. If the files are in standard CSV format,
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either of

> HtWt = read.csv("c:/stat/ncssdata/htwt.csv")

> htwt = read.csv(

+ "http://newton.uor.edu/facultyfolder/jim_bentley/downloads/math111/htwt.csv")

will create a data frame that contains the NCSS Sample data set’s height and weight
data. Note the use of forward slashes instead of backslashes.

The group variable will be imported as a numeric. To help R function efficiently,
it will need to be converted to a factor variable using one of the methods from above.

2.4 Saving and Loading Data Frames

Regardless of how they were created, data frames may be saved in R as part of the R
workspace. The workspace contains all of the variables, data frames, and functions
that you have defined. A workspace is a snapshot of your work to the point of the
save.

To save a workspace click on File – Save Workspace. Select the folder to which
you wish to save the file and a file name and then click on Save. Your workspace is
now safely tucked away on your drive. This file can later be Loaded or you can open
it by double clicking on the file.

History files store the commands that you used during your R session. These can
be saved ans loaded in a manner similar to that of workspaces. These files are are
text files and can be edited using Wordpad or something similar.

3 Graphics

R contains a number of predefined data frames. Some of these will be used in the
examples that are presented below.

R supports a number of different approaches to generating graphics. We will look
at standard R graphics, the lattice package, and graphics using the ggplot2 package.

3.1 Standard R Graphics

To use the standard graphics within R we do not need to load any additional packages.
A simple scatterplot of the data from BPS5e problem 4.9 (Figure 1) can be created
by entering

> plot(bps5.4.9$mass,bps5.4.9$rate,

+ xlab="Lean Body Mass (kilograms)",

+ ylab="Metabolic Rate (calories)")

A boxplot of the rate variable (Figure 2) can be generated using

> boxplot(bps5.4.9$rate, ylab="Metabolic Rate (calories)")
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Figure 1: Plot of metabolic rate as a function of lean body mass for the data from
BPS5 problem 4.9.

10
00

12
00

14
00

16
00

18
00

M
et

ab
ol

ic
 R

at
e 

(c
al

or
ie

s)

Figure 2: Boxplot of metabolic rate for the data from BPS5 problem 4.9.

A histogram of metabolic rate for the data from BPS5 problem 4.9 (Figure 3) can
be generated using

> hist(bps5.4.9$rate, xlab="Metabolic Rate (calories)")

The corresponding stemplot for the rate data is given by entering

> print(stem(bps5.4.9$rate))

The decimal point is 2 digit(s) to the right of the |

8 | 1

10 | 0529

12 | 0656

14 | 023460

16 | 179

18 | 7
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Figure 3: Histogram of the metabolic rates (colories) from BPS5e problem 4.9.

NULL

Since this generates a stemplot with too few stems, we may wish to expand the stems
a bit. The following function call provides more stems—10 to be exact.

> print(stem(bps5.4.9$rate,2))

The decimal point is 2 digit(s) to the right of the |

9 | 1

10 | 05

11 | 29

12 | 06

13 | 56

14 | 02346

15 | 0

16 | 17

17 | 9

18 | 7

NULL

Of course, it is possible to have too many stems as is shown in the following example.

> print(stem(bps5.4.9$rate,5))

The decimal point is 2 digit(s) to the right of the |

9 | 1

9 |

10 | 0
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10 | 5

11 | 2

11 | 9

12 | 0

12 | 6

13 |

13 | 56

14 | 0234

14 | 6

15 | 0

15 |

16 | 1

16 | 7

17 |

17 | 9

18 |

18 | 7

NULL

3.2 Lattice Graphics

Use of the lattice package requires that the package be loaded. Entering

> library(lattice)

accomplishes this.
A simple scatterplot of the data from BPS5e problem 4.9 (Figure 4) can be created

by entering

> latticeplot = xyplot(rate~mass, data=bps5.4.9,

+ xlab="Lean Body Mass (kilograms)",

+ ylab="Metabolic Rate (calories)")

> print(latticeplot)

Comparison of sexes can be made by using conditioning (Figure 5).

> latticeplot = xyplot(rate~mass|sex, data=bps5.4.9,

+ xlab="Lean Body Mass (kilograms)",

+ ylab="Metabolic Rate (calories)")

> print(latticeplot)

or by the using different symbols for the two groups in overlayed plots (Figure 6).

> latticeplot = xyplot(rate~mass, group=sex,

+ pch=c(1,3), data=bps5.4.9,

+ xlab="Lean Body Mass (kilograms)",

+ ylab="Metabolic Rate (calories)")

> print(latticeplot)
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Figure 4: Plot of metabolic rate as a function of lean body mass for the data from
BPS5 problem 4.9.
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Figure 5: Plot of metabolic rate as a function of lean body mass while controlling for
sex for the data from BPS5 problem 4.9.

A boxplot of the rate variable (Figure 7) can be generated using

> latticeplot = bwplot(~rate, data=bps5.4.9,

+ xlab="Metabolic Rate (calories)")

> print(latticeplot)

A boxplot of the rate variable comparing sexes (Figure 8) can be generated using

> latticeplot = bwplot(sex~rate, data=bps5.4.9,

+ ylab="Sex", xlab="Metabolic Rate (calories)")

> print(latticeplot)

The lattice package includes a few sample data frames. One of these is the
singer data frame that contains information on various characteristics of some group
of singers.

We can create a histogram of the heights of the singers (Figure 9) using
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Figure 6: Plot of metabolic rate as a function of lean body mass while controlling for
sex for the data from BPS5 problem 4.9.
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Figure 7: Boxplot of metabolic rate for the data from BPS5 problem 4.9.

> latticeplot = histogram(~height, data=singer)

> print(latticeplot)

We can gain additional information by controlling for voice part when creating a
histogram of the heights of the singers (Figure 10) using

> latticeplot = histogram(~height|voice.part, data=singer)

> print(latticeplot)

Similarly, we can look at the distribution of the heights of the singers using den-
sity plots. Again, we can gain additional information by controlling for voice part
(Figure 11).

> latticeplot = densityplot(~height|voice.part,data=singer)

> print(latticeplot)

One of the nice things about R is that its use of objects means that it is smart about
data types. R knows the difference between cardinal (numerical) and categorical
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Figure 9: Histogram of the heights of singers in the singer data frame.

(factor) data. The histogram function from the lattice package will revert to a
bargraph when asked to plot a factor variable. Figure 12 shows how this works for
the voice.part variable.

> latticeplot = histogram(~voice.part,data=singer)

> print(latticeplot)

Figure 13 is the plot that made the whole idea of trellised graphics famous. The
barley data that is presented had been analyzed for years by both the investigators
and students. It was not until trellised graphics came along that it was recognized
that one of the sites appears to have had its year data swapped.

> latticeplot = dotplot(variety ~ yield | site, data = barley,

+ groups = year, pch=c(1,3),

+ key = simpleKey(levels(barley$year),

+ space = "right"),

+ xlab = "Barley Yield (bushels/acre) ",
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Figure 10: Histogram of the heights of singers in the singer data frame controlling
for voice part.
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Figure 11: Density plot of the heights of singers in the singer data frame controlling
for voice part.

+ aspect=0.5, layout = c(1,6), ylab=NULL)

> print(latticeplot)

3.3 GGPLOT2 Graphics

Use of the GGPLOT2 package requires that the package be loaded. Entering

> library(ggplot2)

accomplishes this. The structure of ggplot is quite different from standard R and
lattice graphics. To generate a boxplot of metabolic rate that allows a comparison by
sex (Figure 14) one enters the following commands.

> bw = ggplot(bps5.4.9,aes(sex,rate))

> bw = bw + ylab("Metabolic Rate (calories)") + xlab("Sex")

> bw = bw + geom_boxplot() + coord_flip()

> print(bw)
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Figure 13: Density plot of the barley data showing the reversal of year for one of the
study sites.

A histogram of metabolic rate (Figure 15) is made by entering the following code.

> plt = ggplot(bps5.4.9, aes(x=rate))

> plt = plt + xlab("Metabolic Rate (calories)")

> plt = plt + geom_histogram(binwidth=200)

> print(plt)

The sentax for a bar chart is similar to that of a histogram. Figure 16 shows a
bar chart of the sex variable from the BPS5e problem 4.9 data.

> plt = ggplot(bps5.4.9, aes(x=sex))

> plt = plt + geom_bar()

> plt = plt + xlab("Sex")

> print(plt)
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Figure 15: Histogram of metabolic rate for the data from BPS5 problem 4.9.

GGPLOT2 also provides scatterplots that can be enhanced with things like LOESS
smooths (Figure 17).

> plt = ggplot(bps5.4.9, aes(mass, rate, shape=sex, linetype=sex))

> plt = plt + xlab("Mass (kilograms)") + ylab("Metabolic Rate (calories)")

> plt = plt + geom_point(size=3)

> plt = plt + stat_smooth(span=0.8, colour="black", lwd=0.25)

> print(plt)

As with the lattice package, it is possible to create separate plots for each of the
sexes by using (Figure 18).

> plt = ggplot(bps5.4.9, aes(mass, rate)) + facet_grid(sex~.)

> plt = plt + xlab("Mass (kilograms)") + ylab("Metabolic Rate (calories)")

> plt = plt + geom_point(size=3)

> plt = plt + stat_smooth(span=0.8, colour="black", lwd=0.25)

> plt = plt + theme_bw()

> print(plt)
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4 Simple Univariate Descriptives

Summary statistics for the htwt data can be obtained via the summary function.

> summary(htwt)

Height Weight Group

Min. :51.0 Min. : 82.0 Min. :1.00

1st Qu.:56.0 1st Qu.:108.2 1st Qu.:1.00

Median :59.5 Median :123.5 Median :2.00

Mean :62.1 Mean :139.6 Mean :1.55

3rd Qu.:68.0 3rd Qu.:166.8 3rd Qu.:2.00

Max. :79.0 Max. :228.0 Max. :2.00

> summary(subset(htwt,Group=="Male"))

Height Weight Group

Min. : NA Min. : NA Min. : NA

1st Qu.: NA 1st Qu.: NA 1st Qu.: NA

Median : NA Median : NA Median : NA

Mean :NaN Mean :NaN Mean :NaN

3rd Qu.: NA 3rd Qu.: NA 3rd Qu.: NA

Max. : NA Max. : NA Max. : NA

> summary(subset(htwt,Group=="Female"))

Height Weight Group

Min. : NA Min. : NA Min. : NA

1st Qu.: NA 1st Qu.: NA 1st Qu.: NA

Median : NA Median : NA Median : NA

Mean :NaN Mean :NaN Mean :NaN

3rd Qu.: NA 3rd Qu.: NA 3rd Qu.: NA

Max. : NA Max. : NA Max. : NA
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Figure 17: LOESS fits with approximate 95% confidence bounds for all data by sex.
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Figure 18: LOESS fits with approximate 95% confidence bounds for all data by sex.
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Note that subsets of the data can be summarized using the Group option.
Specific values may be obtained by using specialized functions. The sample mean

is computed using the mean function. The same value can be found through the use
of the sum function.

> mean(htwt$Weight)

[1] 139.6

> sum(htwt$Weight)

[1] 2792

> length(htwt$Weight)

[1] 20

> sum(htwt$Weight)/length(htwt$Weight)

[1] 139.6

> colMeans(htwt[,1:2])

Height Weight

62.1 139.6

We now compute the variance by summing the squared deviations from the mean
and dividing by n− 1. Computing the mean once and assigning it to xbar and then
calling xbar is more efficient than using mean(htwt$Weight) in the sum.

> xbar = mean(htwt$Weight)

> sum((htwt$Weight-xbar)^2)

[1] 35330.8

> sum((htwt$Weight-xbar)^2)/(length(htwt$Weight)-1)

[1] 1859.516

Or, we can use the var fucntion to compute the variance.

> var(htwt$Weight)

[1] 1859.516

> apply(htwt[,1:2],2,var)

Height Weight

71.25263 1859.51579
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The standard deviation is the square root of the variance. Thus, it is simple to
compute the standard deviation for the Weight data.

> sqrt(var(htwt$Weight))

[1] 43.1221

> sqrt(apply(htwt[,1:2],2,var))

Height Weight

8.441127 43.122103

When outliers or skewness are present, the above measures of centrality and spread
become suspect. At these times we often turn to the median and the IQR. R makes
it easy to compute these values.

We can compute the median and quartiles by sorting and then counting. The
sort function makes this easy.

> sort(htwt$Weight)

[1] 82 87 87 101 103 110 112 119 119 122 125 151 155 157 159 190 191 195 199

[20] 228

However, for large data sets this may be problematic. Using the R functions median

and quantile are more efficient.

> median(htwt$Weight)

[1] 123.5

> quantile(htwt$Weight)

0% 25% 50% 75% 100%

82.00 108.25 123.50 166.75 228.00

> apply(htwt[,1:2],2,median)

Height Weight

59.5 123.5

Rcmdr has the function numSummary which can be called from the Rcmdr menu
–Statistics – Summaries – Numerical Summaries. It can also be called from
the command prompt. numSummary computes all of the above statistics with a single
call.

> numSummary(htwt[,"Weight"], statistics=c("mean", "sd", "quantiles"))

mean sd 0% 25% 50% 75% 100% n

139.6 43.1221 82 108.25 123.5 166.75 228 20
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While it is possible to use mean, var, etc. and get results by group, using numSummary

with groups= is easier.

> numSummary(htwt[,c("Height","Weight")], groups=htwt$Group,

+ statistics=c("mean", "sd", "quantiles"))

Variable: Height

mean sd 0% 25% 50% 75% 100% n

1 65.00000 8.972179 52 59 64 71 79 9

2 59.72727 7.564270 51 54 58 64 76 11

Variable: Weight

mean sd 0% 25% 50% 75% 100% n

1 155 48.99235 87 119.0 159 191 228 9

2 127 34.99714 82 106.5 119 153 199 11

5 Tables

Tables can be created both from the command line and from Rcmdr. We will take a
look at the hospitals data set.

5.1 Manual Tables

The hospitals data frame contains three variables and 2900 observations.

> hospitals =

+ read.csv("http://newton.uor.edu/facultyfolder/jim_bentley/downloads/math111/hospitals.csv")

> names(hospitals)

[1] "hospital" "condition" "survival"

> hospitals[c(1:3,2900),]

hospital condition survival

1 A Good Survived

2 A Good Survived

3 A Good Survived

2900 B Poor Died

To get simple frequencies of each of the variables we can enter

> table(hospitals[,"hospital"])

A B

2100 800

> table(hospitals[,"condition"])
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Good Poor

1200 1700

> table(hospitals[,"survival"])

Died Survived

79 2821

Two way tables are created by providing two columns of data. Examples might be
survival by hospital or survival by condition.

> table(hospitals[,c("hospital","survival")])

survival

hospital Died Survived

A 63 2037

B 16 784

> table(hospitals[,c("survival","condition")])

condition

survival Good Poor

Died 14 65

Survived 1186 1635

Notice that the order of the columns determines the rows and columns respectively.
The table function will also generate three-way tables.

> table(hospitals[,c("survival","hospital","condition")])

, , condition = Good

hospital

survival A B

Died 6 8

Survived 594 592

, , condition = Poor

hospital

survival A B

Died 57 8

Survived 1443 192

The table function assumes that the columns are entered as rows, columns, and
tables respectively.

While the table function is good for getting counts, it does not generate row,
column, or table percentages. Rcmdr does this through the use of the xtabs, colPer-
cents, and rowPercents functions which are accessible through its menus—Statistics
– Contingency Tables. These functions can also be called from the command line.

We first generate a counts table using xtabs.
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> .Table = xtabs(~survival+hospital+condition, data=hospitals)

> .Table

, , condition = Good

hospital

survival A B

Died 6 8

Survived 594 592

, , condition = Poor

hospital

survival A B

Died 57 8

Survived 1443 192

To get column percents we us colPercents on the saved table.

> colPercents(.Table)

, , condition = Good

hospital

survival A B

Died 1 1.3

Survived 99 98.7

Total 100 100.0

Count 600 600.0

, , condition = Poor

hospital

survival A B

Died 3.8 4

Survived 96.2 96

Total 100.0 100

Count 1500.0 200

Row percents can be generated in a similar manner by using rowPercents.

> rowPercents(.Table)

, , condition = Good

hospital
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survival A B Total Count

Died 42.9 57.1 100 14

Survived 50.1 49.9 100 1186

, , condition = Poor

hospital

survival A B Total Count

Died 87.7 12.3 100 65

Survived 88.3 11.7 100 1635

Finally, we can compute table percentages for two-way tables by using totPercents.
We clean up by removing the table with rm.

> .Table = xtabs(~survival+hospital, data=hospitals)

> totPercents(.Table)

A B Total

Died 2.2 0.6 2.7

Survived 70.2 27.0 97.3

Total 72.4 27.6 100.0

> rm(.Table)

6 Testing The Population Mean

6.1 The One Sample Test

A simple test for the population mean of the Weight variable in the htwt data can be
obtained via the t.test function. To compute the one sample t-test of H0 : µ = 145
we enter:

> t.test(htwt$Weight, mu=145, alternative='two.sided',

+ conf.level=.95)

One Sample t-test

data: htwt$Weight

t = -0.56, df = 19, p-value = 0.582

alternative hypothesis: true mean is not equal to 145

95 percent confidence interval:

119.4182 159.7818

sample estimates:

mean of x

139.6
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An equivalent test of H0 : µ = 145 may be carried out using a linear model via
the lm function.

> summary(lm((Weight-145)~1, data=htwt))

Call:

lm(formula = (Weight - 145) ~ 1, data = htwt)

Residuals:

Min 1Q Median 3Q Max

-57.60 -31.35 -16.10 27.15 88.40

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.400 9.642 -0.56 0.582

Residual standard error: 43.12 on 19 degrees of freedom

Notice that adding the coefficient from the model to the hypothesized mean gives the
sample mean. That is 145 + (−5.4) = 139.6. Note, too that the p-values computed
by t.test and lm are the same (p = 0.582).

6.2 The Two Sample Test

A simple test to compare the male and female population means of theWeight variable
in the htwt data can also be obtained via the t.test function. To compute the two
sample t-test of H0 : µm = µf we enter:

> t.test(Weight~Group, alternative='two.sided', conf.level=.95,

+ var.equal=TRUE, data=htwt)

Two Sample t-test

data: Weight by Group

t = 1.4903, df = 18, p-value = 0.1534

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-11.4713 67.4713

sample estimates:

mean in group 1 mean in group 2

155 127

An equivalent test of H0 : β1 = 0 = µm − µf may be carried out using a linear
model via the lm function.

> summary(lm(Weight~Group, data=htwt))
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Call:

lm(formula = Weight ~ Group, data = htwt)

Residuals:

Min 1Q Median 3Q Max

-68.00 -31.50 -6.50 31.25 73.00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 183.00 30.58 5.984 1.17e-05 ***

Group -28.00 18.79 -1.490 0.153

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 41.8 on 18 degrees of freedom

Multiple R-squared: 0.1098, Adjusted R-squared: 0.06039

F-statistic: 2.221 on 1 and 18 DF, p-value: 0.1534

Notice that intercept term (155) is the sample mean for the males. The sample mean
for the females is the model evaluated for a female (155+(−28) = 127). As in the one
sample problem the p-values computed by t.test and lm are the same (p = 0.153).

6.3 Correcting for Height

It is fairly clear from graphing Weight as a function of Height that when modeling
a person’s weight we should correct for height. While this cannot be accomplished
using a t-test, a linear model makes the correction fairly easy.

To test for H0 : β1 = 0 when controlling for Height using the model

Weight = β0 + β1Female + β2Height + ε

we compute

> summary(lm(Weight~1+Group+Height, data=htwt))

Call:

lm(formula = Weight ~ 1 + Group + Height, data = htwt)

Residuals:

Min 1Q Median 3Q Max

-9.539 -6.022 -1.253 4.032 14.720

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -169.1200 15.7227 -10.756 5.26e-09 ***

Group -1.5796 3.4779 -0.454 0.655
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Height 5.0108 0.2103 23.826 1.68e-14 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.334 on 17 degrees of freedom

Multiple R-squared: 0.9741, Adjusted R-squared: 0.9711

F-statistic: 319.9 on 2 and 17 DF, p-value: 3.239e-14

Notice that as before there does note appear to be a difference between females
and males (p = 0.655). However, it is clear that Height is predictive of Weight

(p < 0.001).

6.4 Interaction Terms

At this point we may be convinced that no differences exist in the weights of our two
groups. Clearly the means for this sample are not significantly different. A little more
insight may be gained by including an interaction term.

We now fit the model

Weight = β0 + β1Female + β2Height + β3Female*Height + ε

> lm.htwt = lm(Weight~1+Group*Height, data=htwt)

> summary(lm.htwt)

Call:

lm(formula = Weight ~ 1 + Group * Height, data = htwt)

Residuals:

Min 1Q Median 3Q Max

-9.968 -3.413 -1.104 2.697 13.163

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -252.7467 37.1333 -6.806 4.22e-06 ***

Group 54.4858 23.2997 2.338 0.0327 *

Height 6.3360 0.5766 10.989 7.28e-09 ***

Group:Height -0.9013 0.3713 -2.427 0.0274 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.463 on 16 degrees of freedom

Multiple R-squared: 0.9811, Adjusted R-squared: 0.9775

F-statistic: 276.6 on 3 and 16 DF, p-value: 5.425e-14

It is now clear that not only is height predictive of weight (p < 0.0001), more im-
portantly, females and males put weight on differently. Since the interaction term is
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significant (p = 0.0274) this indicates that their slopes are different with the women
putting on about one pound less per inch than the men.

Diagnostic plots can be generated by using the plot function on the lm object,
lm.htwt. Figure 19 shows the four diagnostic plots that are the default. The analysis
of variance table may also be generated.

> # Set up the page to take all four images

> par(mfrow=c(2,2))

> plot(lm.htwt)

> anova(lm.htwt)

Analysis of Variance Table

Response: Weight

Df Sum Sq Mean Sq F value Pr(>F)

Group 1 3880.8 3880.8 92.9116 4.570e-08 ***

Height 1 30535.6 30535.6 731.0636 8.778e-15 ***

Group:Height 1 246.1 246.1 5.8921 0.02738 *

Residuals 16 668.3 41.8

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The question of mean differences is thus shown to be the wrong question. The
investigator should have been looking to see if men and women put on an equivalent
number of pounds for each inch difference in height. This is something that is not
apparent when looking at t-tests.

7 Fitting Logistic Models Using GLM

The examples that follow are based upon data from the Titanic disaster. Importing
of the data into R can be carried out using the following code.

> titanic =

+ read.csv("http://newton.uor.edu/facultyfolder/jim_bentley/downloads/math111/titanic.csv")

> titanic$AGE=factor(titanic$AGE,labels=c('Child','Adult'))

> titanic$CLASS=factor(titanic$CLASS,labels=c('0','1','2','3'))

> titanic$SEX=factor(titanic$SEX, labels=c('Female','Male'))

> titanic$SURVIVED=factor(titanic$SURVIVED,labels=c('No','Yes'))

The models fitted here give results that are equivalent to those obtained by using
SAS or NCSS.

7.1 CLASS

A model to test for the difference in odds of survival as determined by class may be
fitted using the glm function with binomial error and logit link.
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> titanic.logistic.class=glm(SURVIVED~CLASS,

+ family=binomial(logit),data=titanic)

> summary(titanic.logistic.class)

Call:

glm(formula = SURVIVED ~ CLASS, family = binomial(logit), data = titanic)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.3999 -0.7623 -0.7401 0.9702 1.6906

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.15516 0.07876 -14.667 < 2e-16 ***

CLASS1 1.66434 0.13902 11.972 < 2e-16 ***

CLASS2 0.80785 0.14375 5.620 1.91e-08 ***

CLASS3 0.06785 0.11711 0.579 0.562

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2769.5 on 2200 degrees of freedom

Residual deviance: 2588.6 on 2197 degrees of freedom

AIC: 2596.6

Number of Fisher Scoring iterations: 4

Note that the (log) odds of survival do not differ for classes 0 (viewed as baseline)
and 3. However, classes 1 and 2 differ from 0 (and thus 3) as well as from each other.
This can most easily be seen using the odds ratios.

> coefs=summary(titanic.logistic.class)$coef

> est=exp(coefs[,1])

> upper.ci=exp(coefs[,1]+1.96*coefs[,2])

> lower.ci<-exp(coefs[,1]-1.96*coefs[,2])

> cbind(est,lower.ci,upper.ci)

est lower.ci upper.ci

(Intercept) 0.3150074 0.2699482 0.3675878

CLASS1 5.2822069 4.0223687 6.9366366

CLASS2 2.2430799 1.6923031 2.9731124

CLASS3 1.0702008 0.8507054 1.3463295

> rm(coefs)

While the odds for class 3 relative to class 0 are essentially 1:1, class 1 has a 5.28:1
odds of survival and class 2 has a 2.24:1 odds of survival relative to class 0.
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7.2 AGE and SEX

A model to test for the difference in odds of survival as determined by age and sex
may be fitted using the glm function with binomial error and logit link.

> titanic.logistic.agesex=glm(SURVIVED~AGE*SEX,

+ family=binomial(logit),data=titanic)

> summary(titanic.logistic.agesex)

Call:

glm(formula = SURVIVED ~ AGE * SEX, family = binomial(logit),

data = titanic)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6497 -0.6732 -0.6732 0.7699 1.7865

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.4990 0.3075 1.623 0.1046

AGEAdult 0.5654 0.3269 1.729 0.0837 .

SEXMale -0.6870 0.3970 -1.731 0.0835 .

AGEAdult:SEXMale -1.7465 0.4167 -4.191 2.77e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2769.5 on 2200 degrees of freedom

Residual deviance: 2312.8 on 2197 degrees of freedom

AIC: 2320.8

Number of Fisher Scoring iterations: 4

This model may also be expressed as

> titanic.logistic.agesex2=glm(SURVIVED~AGE+SEX+AGE:SEX,

+ family=binomial(logit),data=titanic)

> summary(titanic.logistic.agesex2)

Call:

glm(formula = SURVIVED ~ AGE + SEX + AGE:SEX, family = binomial(logit),

data = titanic)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6497 -0.6732 -0.6732 0.7699 1.7865
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.4990 0.3075 1.623 0.1046

AGEAdult 0.5654 0.3269 1.729 0.0837 .

SEXMale -0.6870 0.3970 -1.731 0.0835 .

AGEAdult:SEXMale -1.7465 0.4167 -4.191 2.77e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2769.5 on 2200 degrees of freedom

Residual deviance: 2312.8 on 2197 degrees of freedom

AIC: 2320.8

Number of Fisher Scoring iterations: 4

The odds associated with the model are

> coefs=summary(titanic.logistic.agesex2)$coef

> est=exp(coefs[,1])

> upper.ci=exp(coefs[,1]+1.96*coefs[,2])

> lower.ci<-exp(coefs[,1]-1.96*coefs[,2])

> cbind(est,lower.ci,upper.ci)

est lower.ci upper.ci

(Intercept) 1.6470588 0.90154072 3.0090740

AGEAdult 1.7601573 0.92740960 3.3406529

SEXMale 0.5030612 0.23104993 1.0953069

AGEAdult:SEXMale 0.1743855 0.07705575 0.3946531

> rm(coefs)

7.3 CLASS, AGE and SEX

A model to test for the difference in odds of survival as determined by class, age and
sex may be fitted using the glm function with binomial error and logit link.

> titanic.logistic.classagesex=glm(SURVIVED~AGE*SEX+CLASS*SEX+CLASS:AGE,

+ family=binomial(logit),data=titanic)

> summary(titanic.logistic.classagesex)

Call:

glm(formula = SURVIVED ~ AGE * SEX + CLASS * SEX + CLASS:AGE,

family = binomial(logit), data = titanic)
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Deviance Residuals:

Min 1Q Median 3Q Max

-2.6771 -0.7099 -0.5952 0.2374 2.2293

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.86087 0.73347 2.537 0.01118 *

AGEAdult 0.03625 0.39325 0.092 0.92655

SEXMale -2.46011 0.81614 -3.014 0.00258 **

CLASS1 17.99982 920.38680 0.020 0.98440

CLASS2 17.11036 405.66287 0.042 0.96636

CLASS3 -2.05502 0.63854 -3.218 0.00129 **

AGEAdult:SEXMale -0.68679 0.52541 -1.307 0.19116

SEXMale:CLASS1 -1.13608 0.82048 -1.385 0.16616

SEXMale:CLASS2 -1.06807 0.74658 -1.431 0.15254

SEXMale:CLASS3 1.66387 0.65601 2.536 0.01120 *

AGEAdult:CLASS1 -16.34159 920.38645 -0.018 0.98583

AGEAdult:CLASS2 -17.19040 405.66230 -0.042 0.96620

AGEAdult:CLASS3 NA NA NA NA

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2769.5 on 2200 degrees of freedom

Residual deviance: 2097.5 on 2189 degrees of freedom

AIC: 2121.5

Number of Fisher Scoring iterations: 15

The odds associated with the model are

> coefs=summary(titanic.logistic.classagesex)$coef

> est=exp(coefs[,1])

> upper.ci=exp(coefs[,1]+1.96*coefs[,2])

> lower.ci<-exp(coefs[,1]-1.96*coefs[,2])

> cbind(est,lower.ci,upper.ci)

est lower.ci upper.ci

(Intercept) 6.429309e+00 1.52693798 27.0711771

AGEAdult 1.036918e+00 0.47973665 2.2412280

SEXMale 8.542543e-02 0.01725325 0.4229640

CLASS1 6.564808e+07 0.00000000 Inf

CLASS2 2.697330e+07 0.00000000 Inf

CLASS3 1.280899e-01 0.03664230 0.4477617
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AGEAdult:SEXMale 5.031883e-01 0.17967631 1.4091922

SEXMale:CLASS1 3.210755e-01 0.06429782 1.6033118

SEXMale:CLASS2 3.436711e-01 0.07955044 1.4847160

SEXMale:CLASS3 5.279697e+00 1.45950127 19.0991297

AGEAdult:CLASS1 7.997187e-08 0.00000000 Inf

AGEAdult:CLASS2 3.422187e-08 0.00000000 Inf

> rm(coefs)

8 Fitting Logistic Models Using LRM

The models fitted here are the equivalent of those fitted above using GLM. Maybe
the greatest advantage of the use of LRM is the ability to generate nomograms — if
you like them that is.

8.1 CLASS

A model to test for the difference in odds of survival as determined by class may be
fitted using the lrm function.

> library(rms)

> dd = datadist(titanic)

> options(datadist="dd")

> attach(titanic)

> titanic.lrm.class=lrm(SURVIVED~CLASS, x=TRUE, y=TRUE)

> titanic.lrm.class

Logistic Regression Model

lrm(formula = SURVIVED ~ CLASS, x = TRUE, y = TRUE)

Model Likelihood Discrimination Rank Discrim.

Ratio Test Indexes Indexes

Obs 2201 LR chi2 180.90 R2 0.110 C 0.642

No 1490 d.f. 3 g 0.545 Dxy 0.283

Yes 711 Pr(> chi2) <0.0001 gr 1.725 gamma 0.386

max |deriv| 6e-12 gp 0.124 tau-a 0.124

Brier 0.200

Coef S.E. Wald Z Pr(>|Z|)

Intercept -1.1552 0.0788 -14.67 <0.0001

CLASS=1 1.6643 0.1390 11.97 <0.0001

CLASS=2 0.8078 0.1438 5.62 <0.0001

CLASS=3 0.0678 0.1171 0.58 0.5624

> anova(titanic.lrm.class)

30



Wald Statistics Response: SURVIVED

Factor Chi-Square d.f. P

CLASS 173.23 3 <.0001

TOTAL 173.23 3 <.0001

Note that the (log) odds of survival do not differ for classes 0 (viewed as baseline)
and 3. However, classes 1 and 2 differ from 0 (and thus 3) as well as from eachother.
This can most easily be seen using the odds ratios.

> summary(titanic.lrm.class,CLASS='0')

Effects Response : SURVIVED

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

CLASS - 1:0 1 2 NA 1.66 0.14 1.39 1.94

Odds Ratio 1 2 NA 5.28 NA 4.02 6.94

CLASS - 2:0 1 3 NA 0.81 0.14 0.53 1.09

Odds Ratio 1 3 NA 2.24 NA 1.69 2.97

CLASS - 3:0 1 4 NA 0.07 0.12 -0.16 0.30

Odds Ratio 1 4 NA 1.07 NA 0.85 1.35

> summary(titanic.lrm.class,CLASS='3')

Effects Response : SURVIVED

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

CLASS - 0:3 4 1 NA -0.07 0.12 -0.30 0.16

Odds Ratio 4 1 NA 0.93 NA 0.74 1.18

CLASS - 1:3 4 2 NA 1.60 0.14 1.31 1.88

Odds Ratio 4 2 NA 4.94 NA 3.72 6.54

CLASS - 2:3 4 3 NA 0.74 0.15 0.45 1.03

Odds Ratio 4 3 NA 2.10 NA 1.57 2.80

> summary(titanic.lrm.class,CLASS='1')

Effects Response : SURVIVED

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

CLASS - 0:1 2 1 NA -1.66 0.14 -1.94 -1.39

Odds Ratio 2 1 NA 0.19 NA 0.14 0.25

CLASS - 2:1 2 3 NA -0.86 0.17 -1.18 -0.53

Odds Ratio 2 3 NA 0.42 NA 0.31 0.59

CLASS - 3:1 2 4 NA -1.60 0.14 -1.88 -1.31

Odds Ratio 2 4 NA 0.20 NA 0.15 0.27

> summary(titanic.lrm.class,CLASS='2')
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Effects Response : SURVIVED

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

CLASS - 0:2 3 1 NA -0.81 0.14 -1.09 -0.53

Odds Ratio 3 1 NA 0.45 NA 0.34 0.59

CLASS - 1:2 3 2 NA 0.86 0.17 0.53 1.18

Odds Ratio 3 2 NA 2.35 NA 1.70 3.26

CLASS - 3:2 3 4 NA -0.74 0.15 -1.03 -0.45

Odds Ratio 3 4 NA 0.48 NA 0.36 0.64

While the odds for class 3 relative to class 0 are essentially 1:1, class 1 has a 5.28:1
odds of survival and class 2 has a 2.24:1 odds of survival relative to class 0.

The probability of survival for the different classes may be plotted (Figure 20).

> print(plot(Predict(titanic.lrm.class, fun=plogis),

+ ylab='Probability of Survival'))

And we should validate the model.

> validate(titanic.lrm.class, B=80)

index.orig training test optimism index.corrected n

Dxy 0.2833 0.2833 0.2798 0.0034 0.2799 80

R2 0.1102 0.1089 0.1090 -0.0001 0.1103 80

Intercept 0.0000 0.0000 0.0134 -0.0134 0.0134 80

Slope 1.0000 1.0000 1.0088 -0.0088 1.0088 80

Emax 0.0000 0.0000 0.0044 0.0044 0.0044 80

D 0.0817 0.0808 0.0808 0.0000 0.0818 80

U -0.0009 -0.0009 0.0002 -0.0011 0.0002 80

Q 0.0826 0.0817 0.0806 0.0011 0.0816 80

B 0.1998 0.1995 0.2002 -0.0007 0.2004 80

g 0.5450 0.5463 0.5469 -0.0006 0.5455 80

gp 0.1240 0.1236 0.1241 -0.0004 0.1244 80

A nomogram may be helpful at this point (Figure 21.

> nom = nomogram(titanic.lrm.class, fun=plogis)

> print(plot(nom))

NULL

8.2 AGE and SEX

A model to test for the difference in odds of survival as determined by age and sex
may be fitted using the lmr function.
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> dd = datadist(titanic)

> options(datadist="dd")

> attach(titanic)

The following object(s) are masked from 'titanic (position 4)':

AGE, CLASS, SEX, SURVIVED

> titanic.lrm.agesex=lrm(SURVIVED~AGE*SEX, x=TRUE, y=TRUE)

> titanic.lrm.agesex

Logistic Regression Model

lrm(formula = SURVIVED ~ AGE * SEX, x = TRUE, y = TRUE)

Model Likelihood Discrimination Rank Discrim.

Ratio Test Indexes Indexes

Obs 2201 LR chi2 456.68 R2 0.262 C 0.713

No 1490 d.f. 3 g 0.841 Dxy 0.427

Yes 711 Pr(> chi2) <0.0001 gr 2.320 gamma 0.787

max |deriv| 1e-10 gp 0.187 tau-a 0.187

Brier 0.171

Coef S.E. Wald Z Pr(>|Z|)

Intercept 0.4990 0.3075 1.62 0.1046

AGE=Adult 0.5654 0.3269 1.73 0.0837

SEX=Male -0.6870 0.3970 -1.73 0.0835

AGE=Adult * SEX=Male -1.7465 0.4167 -4.19 <0.0001

> anova(titanic.lrm.agesex)

Wald Statistics Response: SURVIVED

Factor Chi-Square d.f. P

AGE (Factor+Higher Order Factors) 23.88 2 <.0001

All Interactions 17.57 1 <.0001

SEX (Factor+Higher Order Factors) 371.97 2 <.0001

All Interactions 17.57 1 <.0001

AGE * SEX (Factor+Higher Order Factors) 17.57 1 <.0001

TOTAL 391.59 3 <.0001

The odds associated with the model are

> summary(titanic.lrm.agesex, AGE='Adult', SEX='Male')
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Effects Response : SURVIVED

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

AGE - Child:Adult 2 1 NA 1.18 0.26 0.67 1.69

Odds Ratio 2 1 NA 3.26 NA 1.96 5.41

SEX - Female:Male 2 1 NA 2.43 0.13 2.19 2.68

Odds Ratio 2 1 NA 11.40 NA 8.89 14.61

Adjusted to: AGE=Adult SEX=Male

> summary(titanic.lrm.agesex, AGE='Child', SEX='Female')

Effects Response : SURVIVED

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

AGE - Adult:Child 1 2 NA 0.57 0.33 -0.08 1.21

Odds Ratio 1 2 NA 1.76 NA 0.93 3.34

SEX - Male:Female 1 2 NA -0.69 0.40 -1.47 0.09

Odds Ratio 1 2 NA 0.50 NA 0.23 1.10

Adjusted to: AGE=Child SEX=Female

The probability of survival for the different combinations of sex and age group
may be plotted (Figure 22).

> Predict(titanic.lrm.agesex, fun=plogis,

+ AGE=c('Child','Adult'), SEX=c('Female','Male'))

AGE SEX yhat lower upper

1 Child Female 0.6222222 0.4741134 0.7505638

2 Adult Female 0.7435294 0.6998704 0.7828084

3 Child Male 0.4531250 0.3362143 0.5754460

4 Adult Male 0.2027594 0.1841419 0.2227454

Response variable (y):

Limits are 0.95 confidence limits

> print(plot(Predict(titanic.lrm.agesex, fun=plogis,

+ AGE=c('Child','Adult'), SEX=c('Female','Male'))))

And we should validate the model.

> validate(titanic.lrm.agesex, B=80)
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index.orig training test optimism index.corrected n

Dxy 0.4267 0.4277 0.4264 0.0013 0.4254 80

R2 0.2618 0.2636 0.2608 0.0029 0.2589 80

Intercept 0.0000 0.0000 -0.0012 0.0012 -0.0012 80

Slope 1.0000 1.0000 0.9951 0.0049 0.9951 80

Emax 0.0000 0.0000 0.0013 0.0013 0.0013 80

D 0.2070 0.2088 0.2062 0.0026 0.2044 80

U -0.0009 -0.0009 -0.0001 -0.0008 -0.0001 80

Q 0.2079 0.2097 0.2062 0.0035 0.2045 80

B 0.1713 0.1708 0.1716 -0.0008 0.1720 80

g 0.8414 0.8451 0.8370 0.0080 0.8334 80

gp 0.1867 0.1871 0.1858 0.0013 0.1854 80

A nomogram may be helpful at this point (Figure 23).

> nom = nomogram(titanic.lrm.agesex, fun=plogis)

> print(plot(nom))

NULL

8.3 CLASS, AGE and SEX

A model to test for the difference in odds of survival as determined by class, age and
sex may be fitted using the lmr function.

> dd = datadist(titanic)

> options(datadist="dd")

> attach(titanic)

The following object(s) are masked from 'titanic (position 4)':

AGE, CLASS, SEX, SURVIVED

The following object(s) are masked from 'titanic (position 6)':

AGE, CLASS, SEX, SURVIVED

> titanic.lrm.classagesex=lrm(SURVIVED~CLASS*SEX+AGE*SEX, x=TRUE, y=TRUE)

> titanic.lrm.classagesex

Logistic Regression Model

lrm(formula = SURVIVED ~ CLASS * SEX + AGE * SEX, x = TRUE, y = TRUE)

Model Likelihood Discrimination Rank Discrim.

Ratio Test Indexes Indexes

Obs 2201 LR chi2 634.70 R2 0.350 C 0.766
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No 1490 d.f. 9 g 1.341 Dxy 0.532

Yes 711 Pr(> chi2) <0.0001 gr 3.823 gamma 0.638

max |deriv| 5e-10 gp 0.233 tau-a 0.233

Brier 0.157

Coef S.E. Wald Z Pr(>|Z|)

Intercept 2.0775 0.7171 2.90 0.0038

CLASS=1 1.6642 0.8003 2.08 0.0376

CLASS=2 0.0497 0.6874 0.07 0.9424

CLASS=3 -2.0894 0.6381 -3.27 0.0011

SEX=Male -1.7888 0.7728 -2.31 0.0206

AGE=Adult -0.1803 0.3618 -0.50 0.6182

CLASS=1 * SEX=Male -1.1033 0.8199 -1.35 0.1784

CLASS=2 * SEX=Male -0.7647 0.7271 -1.05 0.2929

CLASS=3 * SEX=Male 1.5623 0.6562 2.38 0.0173

SEX=Male * AGE=Adult -1.3581 0.4551 -2.98 0.0028

> anova(titanic.lrm.classagesex)

Wald Statistics Response: SURVIVED

Factor Chi-Square d.f. P

CLASS (Factor+Higher Order Factors) 124.28 6 <.0001

All Interactions 48.25 3 <.0001

SEX (Factor+Higher Order Factors) 254.38 5 <.0001

All Interactions 63.47 4 <.0001

AGE (Factor+Higher Order Factors) 31.30 2 <.0001

All Interactions 8.91 1 0.0028

CLASS * SEX (Factor+Higher Order Factors) 48.25 3 <.0001

SEX * AGE (Factor+Higher Order Factors) 8.91 1 0.0028

TOTAL INTERACTION 63.47 4 <.0001

TOTAL 311.38 9 <.0001

The odds associated with the model are

> summary(titanic.lrm.classagesex, CLASS='0', AGE='Adult', SEX='Male')

Effects Response : SURVIVED

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

CLASS - 1:0 1 2 NA 0.56 0.18 0.21 0.91

Odds Ratio 1 2 NA 1.75 NA 1.24 2.48

CLASS - 2:0 1 3 NA -0.72 0.24 -1.18 -0.25

Odds Ratio 1 3 NA 0.49 NA 0.31 0.78

CLASS - 3:0 1 4 NA -0.53 0.15 -0.83 -0.23

Odds Ratio 1 4 NA 0.59 NA 0.44 0.80
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SEX - Female:Male 2 1 NA 3.15 0.62 1.92 4.37

Odds Ratio 2 1 NA 23.26 NA 6.84 79.12

AGE - Child:Adult 2 1 NA 1.54 0.28 1.00 2.08

Odds Ratio 2 1 NA 4.66 NA 2.71 8.00

Adjusted to: CLASS=0 SEX=Male AGE=Adult

> summary(titanic.lrm.classagesex, CLASS='3', AGE='Child', SEX='Female')

Effects Response : SURVIVED

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

CLASS - 0:3 4 1 NA 2.09 0.64 0.84 3.34

Odds Ratio 4 1 NA 8.08 NA 2.31 28.22

CLASS - 1:3 4 2 NA 3.75 0.53 2.72 4.79

Odds Ratio 4 2 NA 42.67 NA 15.11 120.56

CLASS - 2:3 4 3 NA 2.14 0.33 1.49 2.79

Odds Ratio 4 3 NA 8.49 NA 4.45 16.20

SEX - Male:Female 1 2 NA -0.23 0.42 -1.06 0.60

Odds Ratio 1 2 NA 0.80 NA 0.35 1.83

AGE - Adult:Child 1 2 NA -0.18 0.36 -0.89 0.53

Odds Ratio 1 2 NA 0.83 NA 0.41 1.70

Adjusted to: CLASS=3 SEX=Female AGE=Child

The probability of survival for the different combinations of sex and age group
may be plotted (Figure 24).

> Predict(titanic.lrm.classagesex, fun=plogis,

+ CLASS=c('0','1','2','3'), AGE=c('Child','Adult'),

+ SEX=c('Female','Male'))

CLASS AGE SEX yhat lower upper

1 0 Child Female 0.8886935 0.66194638 0.9701987

2 1 Child Female 0.9768348 0.92575376 0.9930367

3 2 Child Female 0.8935160 0.78056016 0.9519104

4 3 Child Female 0.4970148 0.33827964 0.6563539

5 0 Adult Female 0.8695652 0.66454828 0.9573283

6 1 Adult Female 0.9723831 0.92874210 0.9895961

7 2 Adult Female 0.8750999 0.79597143 0.9263784

8 3 Adult Female 0.4520760 0.37865906 0.5276396

9 0 Child Male 0.5716729 0.43150500 0.7012113

10 1 Child Male 0.7004700 0.55927805 0.8116614

11 2 Child Male 0.3949969 0.25626440 0.5529915

12 3 Child Male 0.4406809 0.32190559 0.5666583

13 0 Adult Male 0.2227378 0.19619893 0.2517422
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14 1 Adult Male 0.3342723 0.26910345 0.4064468

15 2 Adult Male 0.1229466 0.08312897 0.1781310

16 3 Adult Male 0.1446912 0.11604927 0.1789709

Response variable (y):

Limits are 0.95 confidence limits

> print(plot(Predict(titanic.lrm.classagesex, fun=plogis,

+ CLASS=c('0','1','2','3'),

+ SEX=c('Female','Male'),

+ AGE=c('Child','Adult')),

+ pch=c(2,1),col=c(1,2),layout=c(1,2)))

And we should validate the model.

> validate(titanic.lrm.classagesex, B=80)

index.orig training test optimism index.corrected n

Dxy 0.5322 0.5320 0.5288 0.0031 0.5291 80

R2 0.3500 0.3528 0.3459 0.0070 0.3430 80

Intercept 0.0000 0.0000 -0.0233 0.0233 -0.0233 80

Slope 1.0000 1.0000 0.9735 0.0265 0.9735 80

Emax 0.0000 0.0000 0.0100 0.0100 0.0100 80

D 0.2879 0.2906 0.2840 0.0066 0.2814 80

U -0.0009 -0.0009 0.0002 -0.0011 0.0002 80

Q 0.2888 0.2915 0.2838 0.0077 0.2811 80

B 0.1571 0.1563 0.1578 -0.0015 0.1585 80

g 1.3411 1.3732 1.3352 0.0381 1.3030 80

gp 0.2326 0.2330 0.2304 0.0026 0.2300 80

A nomogram may be helpful at this point (Figure 25).

> nom = nomogram(titanic.lrm.classagesex, fun=plogis)

> print(plot(nom))

NULL

9 Fitting CART

The CARTs fitted here are analogous to the logistic models fitted in SAS and R.
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9.1 CLASS

A classification tree to look at the predictive nature of class when looking at survival
may be fitted using the rpart function.

> #install.packages(c("rpart", "rpart.plot", "rpartOrdinal"))

> library(rpart)

> library(rpart.plot)

> library(rpartOrdinal)

> titanic.rpart.class=rpart(SURVIVED~CLASS,data=titanic)

> summary(titanic.rpart.class)

Call:

rpart(formula = SURVIVED ~ CLASS, data = titanic)

n= 2201

CP nsplit rel error xerror xstd

1 0.05696203 0 1.0000000 1.0000000 0.03085662

2 0.01000000 2 0.8860759 0.8860759 0.02982488

Node number 1: 2201 observations, complexity param=0.05696203

predicted class=No expected loss=0.323035

class counts: 1490 711

probabilities: 0.677 0.323

left son=2 (1591 obs) right son=3 (610 obs)

Primary splits:

CLASS splits as LRRL, improve=69.6841, (0 missing)

Node number 2: 1591 observations

predicted class=No expected loss=0.2451288

class counts: 1201 390

probabilities: 0.755 0.245

Node number 3: 610 observations, complexity param=0.05696203

predicted class=Yes expected loss=0.4737705

class counts: 289 321

probabilities: 0.474 0.526

left son=6 (285 obs) right son=7 (325 obs)

Primary splits:

CLASS splits as -RL-, improve=13.46678, (0 missing)

Node number 6: 285 observations

predicted class=No expected loss=0.4140351

class counts: 167 118

probabilities: 0.586 0.414
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Node number 7: 325 observations

predicted class=Yes expected loss=0.3753846

class counts: 122 203

probabilities: 0.375 0.625

A plot of the tree (Figure 26) may be created using

> plot(titanic.rpart.class)

> text(titanic.rpart.class)

9.2 AGE and SEX

A classification tree to look at the predictive nature of age and sex when looking at
survival may be fitted using the rpart function.

> titanic.rpart.agesex=rpart(SURVIVED~AGE+SEX,data=titanic)

> summary(titanic.rpart.agesex)

Call:

rpart(formula = SURVIVED ~ AGE + SEX, data = titanic)

n= 2201

CP nsplit rel error xerror xstd

1 0.3066104 0 1.0000000 1.0000000 0.03085662

2 0.0100000 1 0.6933896 0.6933896 0.02750982

Node number 1: 2201 observations, complexity param=0.3066104

predicted class=No expected loss=0.323035

class counts: 1490 711

probabilities: 0.677 0.323

left son=2 (1731 obs) right son=3 (470 obs)

Primary splits:

SEX splits as RL, improve=199.821600, (0 missing)

AGE splits as RL, improve= 9.165241, (0 missing)

Node number 2: 1731 observations

predicted class=No expected loss=0.2120162

class counts: 1364 367

probabilities: 0.788 0.212

Node number 3: 470 observations

predicted class=Yes expected loss=0.2680851

class counts: 126 344

probabilities: 0.268 0.732

A plot of the tree (Figure 27) may be created using
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> plot(titanic.rpart.agesex)

> text(titanic.rpart.agesex)

9.3 CLASS, AGE and SEX

A classification tree to look at the predictive nature of class, age and sex when looking
at survival may be fitted using the rpart function.

> titanic.rpart.classagesex=rpart(SURVIVED~CLASS+AGE+SEX,data=titanic)

> summary(titanic.rpart.classagesex)

Call:

rpart(formula = SURVIVED ~ CLASS + AGE + SEX, data = titanic)

n= 2201

CP nsplit rel error xerror xstd

1 0.30661041 0 1.0000000 1.0000000 0.03085662

2 0.02250352 1 0.6933896 0.6933896 0.02750982

3 0.01125176 2 0.6708861 0.6976090 0.02756915

4 0.01000000 4 0.6483826 0.6779184 0.02728864

Node number 1: 2201 observations, complexity param=0.3066104

predicted class=No expected loss=0.323035

class counts: 1490 711

probabilities: 0.677 0.323

left son=2 (1731 obs) right son=3 (470 obs)

Primary splits:

SEX splits as RL, improve=199.821600, (0 missing)

CLASS splits as LRRL, improve= 69.684100, (0 missing)

AGE splits as RL, improve= 9.165241, (0 missing)

Node number 2: 1731 observations, complexity param=0.01125176

predicted class=No expected loss=0.2120162

class counts: 1364 367

probabilities: 0.788 0.212

left son=4 (1667 obs) right son=5 (64 obs)

Primary splits:

AGE splits as RL, improve=7.726764, (0 missing)

CLASS splits as LRLL, improve=7.046106, (0 missing)

Node number 3: 470 observations, complexity param=0.02250352

predicted class=Yes expected loss=0.2680851

class counts: 126 344

probabilities: 0.268 0.732

left son=6 (196 obs) right son=7 (274 obs)
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Primary splits:

CLASS splits as RRRL, improve=50.015320, (0 missing)

AGE splits as LR, improve= 1.197586, (0 missing)

Surrogate splits:

AGE splits as LR, agree=0.619, adj=0.087, (0 split)

Node number 4: 1667 observations

predicted class=No expected loss=0.2027594

class counts: 1329 338

probabilities: 0.797 0.203

Node number 5: 64 observations, complexity param=0.01125176

predicted class=No expected loss=0.453125

class counts: 35 29

probabilities: 0.547 0.453

left son=10 (48 obs) right son=11 (16 obs)

Primary splits:

CLASS splits as -RRL, improve=12.76042, (0 missing)

Node number 6: 196 observations

predicted class=No expected loss=0.4591837

class counts: 106 90

probabilities: 0.541 0.459

Node number 7: 274 observations

predicted class=Yes expected loss=0.0729927

class counts: 20 254

probabilities: 0.073 0.927

Node number 10: 48 observations

predicted class=No expected loss=0.2708333

class counts: 35 13

probabilities: 0.729 0.271

Node number 11: 16 observations

predicted class=Yes expected loss=0

class counts: 0 16

probabilities: 0.000 1.000

A plot of the tree (Figure 28) may be created using

> plot(titanic.rpart.classagesex)

> text(titanic.rpart.classagesex)
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9.4 Additional Functions

The documentation for the function rpart shows how to prune classification trees.
There are also a number of sites on the web that show how to interpret rpart output.
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Figure 19: Default diagnostic plots for the full model fitted to the htwt data.
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Figure 20: Estimated probability of survival (and 95% CIs) based upon class.
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Figure 21: Estimated probability of survival based upon class.
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Figure 22: Estimated probability of survival based upon sex and age group.

47



Points
0 10 30 50 70 90

AGE
(SEX=Female) Child

Adult

AGE
(SEX=Male)Adult

Child

Total Points
0 10 30 50 70 90

Linear Predictor
−1.4 −1 −0.6 −0.2 0.2 0.6 1

Predicted Value
0.2 0.25 0.30.350.40.450.50.550.60.650.7 0.75

Figure 23: Nomogram for survival based upon sex and age group.
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Figure 24: Estimated probability of survival based upon class, sex and age group.
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Figure 25: Nomogram for survival based upon class, sex and age group.
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Figure 26: Classification tree for survival based upon class.
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Figure 27: Classification tree for survival based upon age and sex.
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Figure 28: Classification tree for survival based upon class, age and sex.
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