Another Example of Hypothesis Testing

To make things a little faster (you won't have to write down anything I put on the board, but you should still fill in what I say) I'm providing these notes. This example is similar to the coin thumping experiment, but forgoes the data collection phase in favor of "canned" observations.

1 The Problem

In a discussion of SAT scores, someone comments: "Because only a minority of high school students take the test, the scores overestimate the ability of the typical high school seniors. The mean SAT mathematics score is about 475 with a standard deviation of 100 , but I think that if all seniors took the test, the mean score would be no more than 450. . In an attempt to show the "sceptic" that he is wrong, the "experts" give the test to an SRS of 500 seniors from California. These students have a mean score of $\bar{x}=461$. Does this support the experts' claim and refute the sceptic's hypothesis?

2 Hypotheses

The null and alternative hypotheses may be stated in words.

- The alternative hypothesis is what we wish to show; in this case the claim of the experts that the mean SAT-M score is at least 450.
- The null hypothesis is the opposite of what we wish to show; that the mean SAT-M score is less than 450.

The "mathese" equivalents of these statements are:

$$
\begin{aligned}
& H_{0}: \mu \leq 450 \\
& H_{a}: \mu>450
\end{aligned}
$$

3 P-value

We now give the "sceptic" the best possible chance and assume that $\mu=450$ (i.e. the null hypothesis) is true. The probability of seeing what we saw or something more extreme is the probability of seeing a mean which is greater than 461. In "mathese" this is

$$
\mathrm{P}(\bar{X}>461) .
$$

Now, by the information given above, under the null hypothesis $X \sim N\left(450,100^{2}\right)$. The CLT tells us that $\bar{X} \sim N\left(450,100^{2} / 500\right)$.

Unfortunately, we don't have a $N\left(450,100^{2} / 500\right)$ table, so we need to standardize.

$$
\begin{aligned}
\mathrm{P}(\bar{X}>461) & =\mathrm{P}\left(\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}>\frac{461-450}{100 / \sqrt{500}}\right) \\
& =\mathrm{P}(Z>2.46)
\end{aligned}
$$

Using Table A we see that

$$
\begin{aligned}
\mathrm{P}(Z>2.46) & =1-\mathrm{P}(Z \leq 2.46) \\
& =1-0.9931 \\
& =0.0069
\end{aligned}
$$

4 Testing

Now, personally, I think that seeing something that should only happen about 7 times out of 1000 is a little strange. So, something must be wrong. We have two possibilities:

- We were unlucky and got a bad sample in our SRS.
- Assuming the null hypothesis was a mistake and the alternative must be true.

SRS's usually don't lie. Thus, the null hypothesis must have been wrong. Hence, I reject the null hypothesis and conclude that the mean SAT-M score must be greater than 450. I do this knowing that there is a 7 in 1000 chance of having made a mistake.

In many cases a mistake in 5 of 100 trials is acceptable. In sociology experiments I might even accept 1 in 10 if nobody is getting hurt. However, if I'm dealing with human hearts and mistakes mean lives, my value would have to be closer to 1 in 100 or maybe 1 in 1000 . The value that I choose to compare my p-value against is called the test's level, α. Since $0.001<0.0069<0.01$, we would reject the null hypothesis if $\alpha=0.01$ (a mistake in 1 out of 100 trials) but not if $\alpha=0.001$ (a mistake in 1 out of 1000 trials).

