Random Response Models Or

R-rated Questions of PG Audiences

General Introduction

Example: (DON'T RESPOND) How many of you are HIV positive?

Consider two methods of obtaining answers to this question:

- Heads up - no privacy
- Heads on desks - limited privacy

General areas where sensitive questions arise:

- Sexual behavior
- Drug or alcohol use
- Criminal actions
- Political or religous preferences

Probability

Population characteristics:

- Proportion with characteristic of interest is p. (i.e. 100p\% HIV positive)
- Proportion without characteristic is $1-p$.

Sample characteristics:

- Sample size is N.
- Response for the $i^{t h}$ person may be represented by

		Response	
Feature	Symbol	"Yes"	"No""
Random Variable	X_{i}	1	0
Probability	Pr	p	$1-p$

Simple Experiments

- Each X_{i} is called a Bernoulli trial.
- If we sum all of the X_{i} 's we get the total number of "Yes" responses. Denoted by $\sum_{i=1}^{n} X_{i}$.
- The average response, $\bar{X}=\sum_{i=1}^{n} X_{i} / N$, is the proportion of our sample which answered "Yes." It is also our best guess at the underlying proportion, p, of the population with the characteristic of interest.

Example: If $p=0.75$ and $N=100$ then

- Observing $\bar{x}=0.72$ and $\bar{x}=0.79$ wouldn't be too surprising.
- Seeing $\bar{x}=0.2$ would be a bit out of the ordinary.

Example: If $p=0.75$ and $N=2$ then we can observe $0,0.5$ and 1 and nothing else.

- Repeated sampling gives us multiple estimates of p. The distributions of the sums from these samples are Binomial.
- The closeness of the estimates to the true proportion is measured by the variance of \bar{X},

$$
\operatorname{Var}(\bar{X})=\frac{p(1-p)}{N}
$$

Example: For $p=0.75$ and $N=100$ we have variance

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\frac{0.75 \times 0.25}{100} \\
& =0.001875
\end{aligned}
$$

Example: For $p=0.75$ and $N=2$ our variance is

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\frac{0.75 \times 0.25}{2} \\
& =0.09375
\end{aligned}
$$

Direct Question Model

To find the proportion of HIV positive individuals we could ask each individual in our sample.

- $Q_{S}=$ sensitive question (e.g. Are you HIV positive?)
- $p=$ proportion of population with characteristic of interest
- Estimated by \bar{X}
- Variance is $\operatorname{Var}(\bar{X})=p(1-p) / N$

We write

$$
\begin{aligned}
\hat{p}_{D Q} & =\text { guess for } p \\
& \equiv \bar{X}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Var}\left(\hat{p}_{D Q}\right) & =\frac{p(1-p)}{N} \\
& =\operatorname{Var}(\bar{X})
\end{aligned}
$$

Can we trust the responses to Q_{S} ?

Randomized Response Model (Innocuous Question)

Notation:

- Greek letters for known probabilities: α, π
- Latin letters for unknown probabilities: r, p, a
- $Q_{I}=$ innocuous question
(e.g. Is your favorite color blue?)
- $\alpha=$ proportion of population answering "Yes" to Q_{I}

Randomly assign a person to Q_{S} or Q_{I}. The interviewer is blind to the question being answered.

Example: Respondent flips a biased coin which the interviewer can't see. If a "Head" then respondent answers Q_{S}. If a "Tail" then Q_{I} is answered.

More notation:

- $\pi=$ probability respondent answers Q_{S}
- $1-\pi=$ probability respondent answers Q_{I}
- $r_{I}=$ probability of a "Yes" response to the complete procedure
- $\bar{X}_{I}=$ observed proportion of "Yes" responses to the randomized procedure

We know π and α and want to know p.

Our estimate of r_{I} is $\widehat{r_{I}}=\bar{X}_{I}$.

Noting that

$$
r_{I}=\pi p+(1-\pi) \alpha
$$

we have by substitution

$$
\widehat{r_{I}}=\pi \widehat{p_{I}}+(1-\pi) \alpha .
$$

A little algebra brings us to

- our estimate, $\widehat{p_{I}}=\left[\widehat{r_{I}}-(1-\pi) \alpha\right] / \pi$, of the proportion of the population with the characteristic of interest
- and our variance

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{p_{I}}\right)= & \frac{p(1-p)}{N} \\
& +\left(\frac{1-\pi}{\pi}\right)^{2}\left[\frac{\alpha(1-\alpha)}{N}\right] \\
& +\left(\frac{1-\pi}{\pi}\right)\left[\frac{\pi(1-\alpha)+\alpha(1-\pi)}{N}\right]
\end{aligned}
$$

Example: Suppose we wish to check for the proportion of virgins within a population. We have $p=0.75$ (unknown), $\alpha=0.5$ (known), $\pi=0.6$ (known) and $N=100$ (known).

If the sample represents the population exactly, then

- 60 answer Q_{S} (45 are virgins)
- 40 answer Q_{I} (20 like blue)

Hence, $\bar{X}_{I}=\#$ 'Yes" $=\frac{20+45}{100}=0.65=\widehat{r_{I}}$
Thus, $\widehat{p_{I}}=\frac{0.65-0.4 \times 0.5}{0.6}=0.45 / 0.6=3 / 4$

Audience Participation Example

Our questions:

- $Q_{S}=$ "Have you ever shoplifted?"
- $Q_{I}=$ "Was the card you cut a heart or a spade?"

Method: Respond to question

- Q_{S} if cut card is A-3 or 8 -10
- Q_{I} if cut card is $4-7$

Because the face cards were removed we have $\pi=0.6$.

Since there are four suits in a deck we have $\alpha=0.5$.

We compute

- $\bar{X}_{I}=\sum X_{i} / N=$
- $\widehat{p}_{I}=\frac{\bar{X}_{I}-(1-0.6) 0.5}{0.6}$

Which leads to $\frac{\bar{X}_{I}-0.2}{0.6}=$

Although we can't find the actual variance of this estimate we can get an estimate of the variance.
$\operatorname{Var}\left(\widehat{p_{I}}\right)=\frac{p(1-p)}{N}$

$$
\begin{aligned}
& +\left(\frac{1-0.6}{0.6}\right)^{2}\left[\frac{0.5(1-0.5)}{N}\right] \\
& +\left(\frac{1-0.6}{0.6}\right)\left[\frac{0.6(1-0.5)+0.5(1-0.6)}{N}\right]
\end{aligned}
$$

If we cheat and substitute $\widehat{p_{I}}$ for p we get

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{p_{I}}\right) \approx & \frac{\widehat{p}(1-\widehat{p})}{N} \\
& +\frac{4}{9}\left[\frac{0.25}{N}\right] \\
= & +\frac{2}{3}\left[\frac{0.5}{N}\right]
\end{aligned}
$$

Associated Works

- Zellner, A. "An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias," JASA June 1962, 348-368.
- Warner, S. "Randomized responses: a survey technique for eliminating evasive answer bias," JASA March 1965, 63-69.
- Abul-Ela, A., Greenberg, B., Horvitz, D., "A multiproportions randomized response model," JASA Sept. 1967, 990-1008.
- Gould, A., Shah, B., Abernathy, J., "Unrelated question randomized response techniques with two trials per respondent," Proceedings of the Social Statistics Section of the ASA 1969.
- Warner, S., "The linear randomized response model," JASA December 1971, 884-888.
- Cambell, C. and Joiner, B., "How to get the answer without being sure you've asked the question," The American Statistician, Dec. 1973, 229231.
- Dowling, T. and Shactman, R., "On the relative efficiency of randomized response models," JASA March 1975, 84-87.

