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10 Fri., 11/7 5.1 Identical Particles: 2-Particle Systems (Q8.6, 11.5) Daily 10.F 

11 

Mon., 11/10 

Tues. 11/11 

Wed., 11/12 

Fri., 11/14 

5.2 Atoms (Q9.2) 

 

5.3 Solids (Unit T7.2) 

8.1-.2 WKB Approximation & Tunneling 

Daily 11.M 

Weekly 11 

Daily 11.W 

Daily 11.F 

 

Equipment 

 Griffith’s text 

 Moore’s Text 

 Spatial physics talk for particle – physics slides 

 

Check dailies 

 

"Im confused what griffiths means when he wavefunctions can overlap. Also can we go 

over the symmetrization requirement?" Jessica 

 

"How do we determine whether a state is symmetric or antisymmetric? For example, the 

singlet and triplet states Griffiths mentions at the end of the chapter." Spencer     
 

 

 

Identical Particles 

5.1 Two-Particle Systems 
 

Classically 
 

If you had a system of two interacting particles, perhaps it’s the Earth and the Sun or two masses 

on either end of a spring, then the system’s energy would be expressible as 
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Quantum Mechanically 
 

Then we should be able to generate a Schrodinger equation for the whole system by replacing the 

Energy and momentum with the appropriate operators 
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http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
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Where the two derivatives are intended to return the momenta for the two members of the 

system.  Evidently, so one derivative pulls out just one particle’s momentum and the other pulls 

out the other particle’s momentum, we need to describe the two particle’s in terms of two 

different position vectors.  So the wave function is of the form  trr ,, 212.1


 . 

Then the probability of finding the two parts of the system anywhere, that is, if you look for 

particle 1 at all possible r1’s and particle 2 at all possible r2’s, should be 1: 

    21

2

21 ,,1 dVoldVoltrr
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Mind you, it’s not that these are different volumes, it’s that we’re individually looking for 

particle 1 and particle 2 over all space. 

 

What can you do with such a system wavefunction? For example, 
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Separable?  While the kinetic energy terms are distinct, if the two particles are interacting, the 

potential energy will likely depend upon 21 rrr


  in a non-separable way.  Which means that 

the solution isn’t separable either. 

 

Correct Hydrogen 
You might rightly think ‘but shouldn’t we have treated the Hydrogen atom’s electron and proton 

like this?’  Yes indeed.  The Coulomb potential isn’t really the ‘electron’s’, it’s a property of the 

electron-proton system, and in principle the proton is free to respond to that interaction.  In 

practice, the proton’s being so much more massive than the electron means it’s a pretty good 

approximation that it remains stationary, but to be more accurate, 
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As problem 5.1 suggests, if you change variables from er


and pr
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 (the center of mass), the Hamiltonian can be rephrased as  
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Which is exactly how you’ll treat the Earth orbiting the sun in Classical Mechanics.  This 

equation does have separate dependence on R and r, so the wavefunction can be written as 

separable factors, 

    trtRH ,,


 . 
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The one wavefunction describes the center of mas of the Hydrogen, in other words, how the 

Hydrogen atom might move around the room, and the other describes how the separation 

between the proton and electron can change. 

We could go so far as to separate out the energies: 
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2ˆˆ   Hydrogen as a whole is a free particle 
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ˆˆ  which looks just like the approximate relation when we imagined 

the proton was locked at the origin.  So all the results will be the same, including the spectrum 

for transitions between energy levels, excel we have 
ep

ep

mm

mm

  instead of e
m .  Which means the 

energies are off by a factor of about 0.999 – not too bad. 

 

5.1.1 Bosons and Fermions 
Though it may not be terribly realistic, the simplest case to consider is two non-interacting 

particles.  If we make them indistinguishable, we see something really interesting and 

fundamental. 

 

Distinguishable 
First off, let’s imagine we have two distinguishable particles, like the electron and the proton 

in the Hydrogen atom, but we’ll just call them particles 1 and 2. Let’s say Particle 1 is in 

state a and particle 2 is in state b. 

   2121 rr ba

D


 ,  

Indistinguishable / Identical 
 Now, if the two particles aren’t distinguishable, say they’re both electrons, and one is in 

the n = 1 state and the other is in the n = 2 state, but they’re otherwise identical (including being 

in the same spin state- otherwise you could use that to tell them apart) then we can’t tell which 

electron is in which state.  So then the wavefunction for the whole system must be some linear 

combination that would, upon swapping the two particles (1 and 2) between the two states (a and 

b) give the same physical results. 
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But you may object that ‘the negative sign would mean that the wavefunction after swapping the 

two particles states would give the opposite wavefunction:  
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And those two are  distinguishable!  Yes and no.  The wavefunctions are different; however, they 

do not lead to physically distinguishable results!  That’s because probabilities and thus 

measurments depend on the probability density,
2

 , so a difference of sign in the wavefunction 

isn’t physically meaningful. 

 

How do we choose the sign? 

 

Feynman’s Exchange by Rotation.  Griffiths notes that the answer comes from relativistic 

quantum mechanics.  Feynman wasn’t satisfied with that and argued that it the exchange must 

correspond to a physical process that you can imagine doing.  The process he proposed that gives 

the same results as relativistic quantum mechanics is if the ‘exchange’ operator corresponded 

with the physical process of rotating your perspective, I’ll call it R̂ for rotate.  The idea is 

something like this: if you identify r1 as the vector pointing to your right and r2 as the vector 

pointing to your left, then you just spin yourself (your reference frame) around 180° and r1 is 

now to your left while r2  is now to your right.  Of course, rotating your reference frame 

coordintes = - is equivalent to rotating your system system =  The effect of that is  
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you get + if m is an integer and – if m is a half-integer. 

 

There we have it. Now, this rotation is equivalent to exchanging particles (just swapping the 1’s 

and 2’s) if  
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 ,   for integer spin particles, Bosons 

 

        122121 rrrrA babaF
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 ,   for half-integer spin particles, Fermions 

 

Particles in the same state   
 

Now, what if the two particles happen to be in the same state? Like both are in the n = 1 state.  

 

Bose-Einstein Condensate 

For Bosons, there’s no problem, 

              12122121 2 rrArrrrA aaaaaaB
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So it’s completely allowed for two Bosons to have the same state.  In statistical mechanics, 

you’ll see that this freedom leads, in the most extreme case, to a Bose-Einstein Condensate, in 

which an awful lot of the bosons in a population ‘condense’ down into the system’s ground state 

at low temperatures. 

 

Pauli Exclusion Principle 

However, for Fermions, things don’t look so good, 

           0122121  rrrrA aaaaF
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The composite wavefunction is 0, so the probability of finding these two in the same state 

anywhere is 0.  It can’t happen.  This is known as the Pauli Exclusion Principle.  In statistical 
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mechanics, this will mean that even at 0 temperature, higher-energy states will be occupied if the 

lower energy ones are ‘full.’ 

 

1. Conceptual: List several properties of bosons vs. fermions. 

 

Considering Spin 
Now, I really relied upon there being spin to appeal to this rotation as being analogous to 

exchange.  Griffiths comments that the overall composite state of the system, 

  bababa mlrr ,,, ,, 21


  will be symmetric for Bosons and anti-symmetric for Fermions.  Since the 

Triplet spin state is itself symmetric, that means the spatial part must be anti-symmetric, but 

since the singlet spin state is anti-symmetric, that means that the spatial part must be symmetric. 

This is consistent with the exchange operator being  
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2. Starting Weekly HW: Griffiths problem 5.4 

 

 

5.1.2 Exchange Forces 
The “exchange force” isn’t really a force at all, but the effect of the wavefunction’s being 

symmetric or anti-symmetric.  It’s most easily seen in considering the average separation of 

two particles in the three different cases: distinguishable particles, identical particles in a 

symmetric spatial state, and identical particles in an anti-symmetric spatial state. 
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Case 1: Distinguishable Particles 
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 Where, what I mean by this double-bracket notation is we’ve got both wavefunctions a 

and b in there. 
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Similarly, 
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Ok, having seen what this looks like in 3-D, there’s no real conceptual gain to working here 

rather than for 1-D, so, like Griffiths, let’s focus on a 1-D problem.  Then 
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Case 2: Identical Particles 
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Where this time,  
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where terms vanished because we’ll assume ortho-normality. 

 

Similarly, 
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As for the cross term, 
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 where the last two terms involve mixed inner products 

So, 
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Comparing with the distinguishable case, 
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The moral is that if the two indistinguishable particles are in anti-symmetric spatial state, 

they are further apart than if they were distinguishable, but if they are in the symmetric spatial 

state, then they are closer than if they were distinguishable. 

 

Covalent bonds. 

 

Recall that spin-1/2 particles can be in the symmetric spatial state if they are in the anti-

symmetric, i.e., singlet, anti-aligned, spin state.  So, in that case, two electrons shared by two 

atoms would tend toward each other, bridging the gap between the two atoms. 

 

You may recall that Moore argued this would be the lower-energy configuration since being 

symmetric means that the shared wavefunction doesn’t have to go to 0 in the middle, so the 

wavelength can by broader / the concavity can be less / the kinetic energy can be less. 

 

 

1. Conceptual: Explain, using Quantum Mechanics, the source of the covalent bond. 

 

 

 

2. Starting Weekly HW: Griffiths problem 5.6 


