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Maxwell’s Laws

Relating Fields and Sources
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Helmholtz Theorem: if you know a vector field’s curl and divergence (and time derivative), you
know everything
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Corresponding Relations between Potentials

(on the road to general solutions for E and B)
Combine

Maxwell’s Relations with Potentials’

Between Fields &
Sources

Faraday’s Law

—

B

to Relate Potentials

Relations to Fields & Sources

“WUNV=E VxA=B No effect on electrostatics. In

/ electro dynamics, work
Fix by Redefiw _YY_E  associated with V and dA/dt.

— x (true for any scalar field V.)
Disagrees with VxE =-VxVV =0

|

S| R

VXE=—"
a

Maxwell — Ampere’s Law

—

—

<!

xﬁz_g(m):w(_%

o - -

= = %=
VXB_ﬂogoE:ﬂoJ

Gauss’s Law for Magnetism
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Corresponding Relations between Potentials

(on the road to general solutions for E and B)

Relate Potentials & Sources
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Just Mathematical Facts Relate potentials and sources

Rearrange for future use
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Corresponding Relations between Potentials

(on the road to general solutions for E and B)
We want to solve for V and A given

oAl p A\ == - N -
V(VV-FE] —— and (VZA o€, pe J V(V'A‘Fﬂogogj:_ﬂo\]
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Ga uge Choices Like a choice of coordinate systems —
A and V can be anything that satisfy can choose a potential’s gauge
VxA=B RV .V @ _E without changing the answers to
a physicallyimeaningful questions

Can choose any functional form for A’s divergence without changing its relation with
B, but must compensate by modifying V

Coulomb’s Gauge
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Simple! :
Not Simple!
Some Other Gauge o
Ao AC+V/1 Must compensate by V, =V, +?
Can get away with this since But if we do this, then it effects E:
curl of a gradient must be 0 - é,Ac
Demo: Say VxA.=B Demo: Say —VVe-—==
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Corresponding Relations between Potentials

(on the road to general solutions for E and B)
We want to solve for V and A given
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Sort of Simple

Sort of Simple
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Corresponding Relations between Potentials

(on the road to general solutions for E and B)
We want to solve for V and A given

Lorentz Gauge
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%o Minor Digression
1y, = (47 x107V/, [8.85x 1072 ¢/ )
15, = (1.112x1077 /)
11,60 = (3. 33><10-9 s.f
HoEo =
T (2.9986><1o8 mf
1
Hobo =3
o p c 6% ) = .
2
(V _c%? L:_g_o D’Alembertian [vZ_C%? A=—p,d
ﬁZ
o[-+ )
o, =— £ O°A=—u,]



Example like Ex. 10.1 ? Time varying Dipole

Observation

location - m_sin(wt, )2 x
A(r) — Z_;%

r2




Side Note: Lorentz Force Law in Potential Form
(revisited now that we buyE=-vv —‘Zt—A

Consider your “system” a particle interacting with electric and magnetic fields
(really interacting with other charges via their electric and magnetic fields)

d,[I3=Ifnet=qv CI@ qv x VxA)+q ~VV fA] qVX(VxA)Jrq( ﬁv_%,&Jr(vﬁ)A]
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for any vector

- _ - d -~ O6A (. =\«
i(erqA):_vq(\/ —V A) — A= (V-V)A
dt \ Y 1 /dt &T
" p" "U" Charge’s experience of field field varies and charge moves to where
varies with time because with time  field may be different
d — 8A 'dx 0 = dy 0 - dz 0 -
By Product rule (4) dt ot dt OX At dt oy A+ aa A

Ux(Vx A)= V(7 A)-(Ax (Vx }+ (A- i+ (7 -V )A)

Derivative with respect to potential not source velocity

Consider your “system” a particle and the fields.
The force is negative gradient the potential energy

it ~VglV —v-A)=0 then B +0A =P, +0A, =const
‘potential momentum’



Finding Vector Potential
§A-di=[B-da=a
Charged particle outside a disappearing solenoid

Ao (1,n1s/2)p  s<R,
M (4onIR? /25 s> R,

A 0
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initially
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Continuous Source Distribution

Solve

As with solving any differential equation, “inspired guess” is a valid solution method
a) We already know for static charge or current distributions

_P I
VZVL - go and VZA:—ﬂOJ

Are solved by j(r’)
47[8 J‘p(r)df and A(F):Z_;;J‘sz_r

b) Without sources, we have the classic wave equation, so variations in V and A propagate

2
(VZ—%i . =0

c étz
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VZVL = 012 EVL

ik-(£—Ct)
V (t)xce
So a variation in V observed by an observer at time t was generated at a distance r away at previous time
"
tr ={- E
Combining what we know about these two special cases (constant or free space), we can guess

e e

V(F,t)=

Areg



observation locations not source locations. atr dJt

Continuous Source Distribution

Solve
0% = -
2
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Del asks how detected voltage changes as we change op(r, tr) — 9p(, tr) = p'(?’, t.)



Continuous Source Distribution
Solve
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Continuous Source Distribution

Solve
0% = -
2
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Continuous Source Distribution

—

A(F,t): 47’.[ (% )dr where t, =t—=

C

Example: find the Vector potential for a wire carrying a linearly growing current.

Defined piecewise
through time

for t<O
I(t) =
kt for t>0
()= for t <O
kt, for t >0

Rephrase as piecewise

through space
for t—-+<0

0
| = or
() {k( —+) for t-+>0

_/‘_r
ri)= | 2

As time goes on, observer becomes aware of more
and more of wire starting to carry current. At any
time, some morsels are just too far away to
contribute. Limits should reflect that.

ct<y 2] <y/(ct) -7
or
tse O |2 > 4/(ct)’ —s?

Mj 1 )
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Continuous Source Distribution
A(F’t):—ﬂjwdr' where t, =t—=

4z C
Example: find the Vector potential for a wire carrying a linearly growing current.
Defined piecewise = w 1) =
through time AF/t)= _VJ . a

T () 0 for t-2<0 z'<4(ct)’ —s?
" k(t—x) for t_%>oorz’>—/(ct)2—sz

z\(r,t)——f;k[unw("t;z‘523“2+ (Ct)z_sz}l(\/(c )-8 —— (ct)z—szj]2

for s>ct




Continuous Source Distribution
A(F’t):—ﬂJ‘Mdr' where t, =t—=

A C

1+1/1
A(F,t) —f{ﬁkt{ln{ } 24/1— Jz for s<ct

0 for s>ct

Example: What are B and E?
VxA=B

| e NG L e
5(r.1)= as[ 4”k{ln[ 2J1- (=) | |4 for s<ct
0 for s>ct

é(r,t)={12°02k\/(?)21¢3 for <o
0

for s>ct
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Continuous Source Distribution
A(F’t):—ﬂJ‘Mdr' where trEt_%

A

1 w/1
_ -¢;m{m{'* } 24/1— szm's<d

0 for s>ct

Example: What are B and E?

5(7.0)— {—;;gczlg/(c;)2 _14 for s<ct
0

for s>ct

~ . OA
——  All but one factor of t is bound up in (s/ct), so
ot same thing, times —(s/t), in z direction, and a

term for the one lone t

mu

0 for s> ct



Continuous Source Distribution

—

. t
A(r,t): 4;;_[ (% r)dT where tr—t—g
Exercise: find the Vector potential for a wire that momentarily had a burst of current.

Defined piecewise L 1(F',t)
through time A(l’,t)= j ] dl’

—00

()= q°5(t_tb) So, at some time, t,, the current will blink on and off again. The
observer will first notice the middle blink, then just either side of
the middle, then a little further out,...

t —t .
A(I‘ t)= Jqoé( )d '
So, we get contrlbutlon to our integral only when
n
t =t =t——
b r C
- C(t_tb)

Which is true at two locations at any moment t:

2= +(c(t-t,)) -

We could rephrase the delta function as being a
spike at these two locations, or we could observe
the integral is even and then wave our hands

q 5(t t ) 15 H qo 5
Alr,t)=—222|= dz'l =—5% Z
(I‘ _[ 27 C(’[ _th)




Continuous Source Distribution

C

AF,t)="- ;rj (,tt)dr where t =t-=

Charged sphere spinning up from rest



http://web.mit.edu/viz/spin/
http://web.mit.edu/viz/spin/visualizations/movies/sphereCreate.avi
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