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1.6, 5.4.1-.4.2 Magnetic Vector Potential
5.4.3 Multipole Expansion of the Vector Potential
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Biot-Savart Law

§(7_”)) = Z—%f%zdr’

It Follows that

L Ampere’s
Vo B@) =0 7 X B(F) = o] ()
or equivalently or equivalently
jﬁ(f)-da=o fﬁ(f)-dz*:uol
Shortcut to
finding field if

symmetry is right



. V4
Using Ampere’s Law
fﬁ(‘?) cdl = U,
Simple Example: ‘very long’, straight wire of uniform current
5 (sure, we already know the answer, but just to see how it’s done)

Reason direction B = ¢

A Select Loop accordingly dl = sdo@
Do math

fﬁ(?) cdl = Uyl
B(r)2ms = u,l

I
27TS
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B(H) =t=¢

2TS




Using Ampere’s Law
fﬁ(?)-di:uoz

Examples




Using Ampere’s Law for Boundary Condition
fﬁ(?) cdl = U,
Example: ‘very long’ sheet with K = K%

What’s B above and below?

ND>

Reason direction

Select Loop accordingly

Do math




Using Ampere’s Law
fﬁ(f:) dl = Holenc
Example: torus

What’s B above and below?

Reason direction

Select Loop accordingly

Do math




Introducing the Vector Potential

v, B(@) =0 U, X B(F) = po] ()
or equivalently or equivalently
fﬁ(f)-da=o fﬁ(f)-dz*:uoz

But first, recall...



Motivating Scalar Potential,
Mathematically

In mathland, say you have scalar field f.
(= - O ¢)o [0 ¢)n (O ()\a
What's Vx(Vf ):? Well, Vf =(& ij+ 5 ij+(5 sz

So, @X(ﬁf ): [ﬂ(ﬁ fj_ﬁ(ﬁ f ])2+(...)§/+(...)2

oy \ 0z oz\ oy
=0
Free to define Phrased the other way around:
F =Vf For any vector field F for which ﬁf Iff 0
For whom There is a scalar field f such that F = Vf
Vi (F): 0 VxE =0 so we can define a scalar field,

call it -V ,such that E = vV



Motivating Vector Potential,
Mathematically

In mathland, say you have vector fieldf .

A - ¢ [0 0 . (O 0 . [0 0 R
What's V-(Vx f):? Well, V x f —(a—y fz—afij+(a fx—&fzjy+[& fy—a ijz

V. (Oxf)=2 L -2, +3(3 fx—ifzj+§ Of 9%
ox \ oy 0z oy \ 0z OX 0z \ OX oy

Phrased the other way around:
For any vector field F for which V-F =0

F=Vxf L
For whom, There is another vector field f such that F =V x f
V-F=0 V-B=0 sowe can define a vector field,

Free to define

callit A ,suchthat B=V x A



Re-Relating field and Potential

B_-VxA Analogousto VxB=uJ
S0 as

—

Azﬁ Bx:;dz" ézﬁﬂojjx’:ﬁdrr
[B-da=§(VxA)da
/ By Stokes’
O, =fA-dl

Magnetic flux sources vector potential

Analogous to

1, | :igé-dr




Relating Current and Potential

B=VxA

meanwhile

. ~ Pause for motivating analogy
VxB=y,J With the scalar potential,

SO only the differences between
- (= = - two values are physically
V (V X A): :uo‘] significant since the gradient
relates to E, E =—-VV
V,and V, + C would
ﬁ(ﬁ : A)_ V2A = ,Uoj correspond to the same
actual field.

by vector Identity (11)

where

VIA=V?(AR+A J+A7)
The curl, not divergence, of A is physically meaningful; if it had a divergence, that term of A
could be described as a gradient of a scalar field, which itself can have no curl, and thus

must not be physically significant. So we’re free to specify V-A=0 without constraining A’s
possible curls.

—

— 2 —
VA=—u,J This choice defines the
“Coulomb Gauge”

(In Ch. 10, it will be mathematically convenient to make other choices)



Relating Current and Potential

V2A< = _:uo‘Jx
VZA= —u,J Or— VA, =—p,J,
V Az _luo z
Individually, these are same form as

V&Y, :—ép

Which we’ve shown pairs with

V = —d7’

So apparently VA = — u J  pairs with
TAX _ to .idr’

A »
#_& i ! _J :&._ydz-'
A—47[J.’tdr or— A A

A, _to .Ldf'

- A




Relating Current, Potential, and Field




Finding Vector Potential from Field
§A-di=[B-da=a
Solenoid: Find the vector potential of an infinite solenoid
with n turns per length, radius R, and current /.

Esoleno'd = {(Iuonl)z a R,

0 s> R.

§Au-dl=[B-da $A,-dl=[B,-da
§(Aout¢3).(sd¢;$):2ﬁ B(s'ds'd¢) §(A.8)-sdgd)- j j (s'ds'dg)

27R 27S 27s

A fsdg = j j B, s'ds'dg’ + j j B, S'ds'dg’  A,275 = [ [ (u,nl)s'ds'dg’

27R 27S

A, 275 = ”(yonl Js'ds'dg’ + [ [ (0)s'ds'dg’ An275=uonI27zjs’ds’d¢’
00 OR 0

= unl2z(is?
0 u,nls
2 A\n =
_ H,NIR 2
2S

Aout




Finding Vector Potential from Field

T §Z\-d‘é=j§-da=q>
|

Long, thing wire: Find the vector potential of a thin wire

Ez(ﬂoj/zm)(} carrying current /.
e
F - Az
_ i
R
aniin it
§A- di = j B.da
z+.Az s+.As Z S Z+AZ S+AS
. (AIeftz). dz + o (Atopz) d§ + _.‘(Afightz). dz + I(Abottomz)' d§ - I j B(dS,dZ,)
z+Z.Az : Z+ZAJrZAz S+AS ,U | T z S
| Ay?)-dZ + Z;Agphghtz) 47 = j | > (ds'dz’)
,UOI S+AS 1 ,
At AZ — Ay AZ j — ds'Az




Finding J from Vector Potential _
What current density would produce the vector potential 4=% &

(where k is a constant) in cylindrical coordinates?
V2A=—1J where V’A=V’AR+V’AJ+V°Az2

So, convert to Cartesian A=k <—sin &, cos¢,0>
One component at a time

oA =1 (8(—\ksin¢)}+3128(—ksin¢) *(Aksing)_ _, sing

S OS ail 6¢2 a>\ SZ
( é(kcowj 1 o(k cosg) 82 k\t\os¢ _ __Cosg
VA, - 2 -k
s 05 @ s*  0¢ 822\ S
@2A2< COS¢ 0>
s° s°
-, Kk . n . . K -
VZA:——2<—sm¢,cos¢,O> = £2¢ =—uJ so J=Lt—9¢

S



Finding J from Vector Potential _
What current density would produce the vector potential 4=% &

(where k is a constant) in cylindrical coordinates?
VZA=—u J Alternatively,

- - 170 170 k
B=VxA-= SA )2 ==—\(ks)Z=—12
sé( ¢) s&s( ) S
and then
- - - 1( B\~ 1| 2(k\|, k
=1 = 1z - |- = = )
J =5 VxB ,uo( ésj¢ /Jo|: &(Sﬂ¢ foS”



Finding A from J
I U A
A_47z"-*tdr 47ZJ.%dI

Find the vector potential for a current / along the z axis from z, to z,.

N>

=l

2 =+7"2 +5>

A— J‘ Idz 5
o 22 +5°
A:%[In(z+\/zz+sz)];22
T

/ 2 2
ar Z,++2. +S°




Motivating Electric Potential,

Generally

1—)2 _I |:1—>2

— —

APE.,=—[F,-d

a —>

Electrically

Fiye =0,E,(F,)

Physically
Akin to Potential Energy
Object 2 is the “system”, 1 is “external.” Work done by

object 1 when exerting force on object 2 which moves
fromatob

Objects 1 and 2 are the “system”. Change in their
potential as they interact while separating fromato b

Combining:
b - ,_ —
AP.E. 1,2 = _[ qz - qzja El(rz)'dg
thus
AP.E b~ -
= —_J‘a El( 2)'d€



Physical Meaning of Vector Potential

Akin to potential momentum

__future__ time-varying electric

Consider your “system” a particle interacting with electric and magnetic fields
(really interacting with other charges via their electric and magnetic fields)

g = i} -
p p=F_ =0V =qV><(V>< A)+q -VV _g_AJ =q\7><(§>< A)+q(—§v —%5&(\7-?)5\)
(- - - f t
¢ o[ ¥l0-A)- S A)ral-v) 4 ARG Ok
dt ot
i(f)+ qA.): —ﬁq(\/ v A») By Product rule (4)
dt | o o e ’ ﬁ(v.,&):vx(ﬁx A)+ Ax(%S\VF(A-# +(\7'§)A

Derivative with respect to potential not source velocity

Consider your “system” a particle and the fields.
The force is negative gradient the potential energy
if —6(2](\/ —\7-/&)=0 then P;+0A =P, +9A; =const
N

‘potential momentum’



Finding Vector Potential
§A-di=[B-da=a
Charged particle outside a disappearing solenoid

Ao (1,n1s/2)p  s<R,
M (4onIR? /25 s> R,

A 0

finally —

initially
%(mV+ q,&)z —?q(@( —\7A\- A) =0
m‘Xi + qﬁﬁ = mv, +q'&f

qo/ a(znIR? /25 ) = mv,

%(yoanz/Zs)%:Vf
~X




Ex. 5.11: What’s the magnetic potential of a sphere with

surface charge density constant o rotating at w.
r 4A(T) = o Kda' da’=R?d¢'singdo

™

@

v =+R?+r2—2Rrcosd’

{ — v Whatisy ?
& RO K=oV v

If rotating about z, it would simply be
r /\_/R5|n(6")d¢

_____ ‘ Rsin 0'wé-

..................

4 If @ = @i this would have_
been @xF' =Rsin@'w¢ =V
Generally, @xT' =V

@ = o(sinwR +cosyz)
' = R(sin @’ cos g% +sin @'sin ¢4 + cos 67)
V=axT" = o(sinyX+cosyz )x R(sin 8 cos ¢k +sin 8’ cos ¢4 + cos 67)

V = oR((—sin @' cos ¢’ cosy )X + (cosy sin &' cos ¢’ —siny cos &' )y +siny sin @'sin ¢%)

FOF e fouwre will be four integrals. All but one has a factom.f/
'

_[cosqﬁ’dgo 0 or_[sm¢’dgo 0 ¢':z7zef:ﬂ : \D2A 4 «ir W O
o leaving A()=2 | caR(-siny cos@’)R d¢sm49d6’y

0 0 JR2 412 —2Rrcosd’




Ex. 5.11: What’s the magnetic potential of a sphere with

surface charge den5|ty constant Jrotatmg at w.

; r ¢f”j” (—siny cos @' )R*dg'sin 6?’dé"y
JRZ 412 —2Rr cos @'

cosé'sinddeo’ ¢

@

- Zﬂaa)RBSIm//J‘
\/R +r?—2Rrcosé’

@0 cos@d(cosd) .

A(F)=—% cwR®siny Y
X (F)=—1 ! JR?+r2—2Rrcosé’

X N - ¢=-1 dév
AT)=—% caR®siny < y
F)=-4 ! JRZ+r?—2Rr¢

-1

2 2
A(F) =% oeR?sin 1//( i ZLLRM JRZ4+r7 - 2Rr§j
r

1
-1

AF)= grf @R Sin w((RZ +1r2 4+ RrE WRZ 417 - 2Rrg) g
1

A(F)= ’gO C()RSII’H//((RZ—FFZ—RF (R+r1) —(R*+r?+Rr (R—r)zjy
r’



Ex. 5.11: What’s the magnetic potential of a sphere with
surface charge density constant orotating at w.

P 4 AF)= ’g‘;f Rawsin gu((R2+r2—Rr)(R+r)—(R2+r2+Rr)R—rDy

IfR>r, then |R—r|=R-r

R .&/Rizn(mdﬁ (R2+r2—Rr)(R+r)—(R2+r2+RrXR—r):2r3
_____ T G .
Y A(F) = e Ror sin l//fl

If R<r, then |[R—r|=r-R
(R2+r?=RrfR+r)-(R?+r?+Rrfr—R)=2R’

~N  UO A
AF)= g7 R*wsinyy

Recognizing that ()% = wrsin Ay these can be written generally

( G N .
o Roxr r<R

A(f):<
g‘OTfR“@xr r>R




Relating Current, Potential, and Field




Thurs.

Fri. 1.6, 5.4.1-.4.2 Magnetic Vector Potential
Mon. 5.4.3 Multipole Expansion of the Vector Potential
Wed. 7.1.1-7.1.3 Ohm’s Law & Emf

HW7/




Finding J from Vector Potential _
What current density would produce the vector potential 4=% &

(where k is a constant) in cylindrical coordinates?
V2A=—1J where V’A=V’AR+V’AJ+V’Az2

So, convert to Cartesian A=k<—sin¢,cos¢,0>:k<— . y2 TS X2 — ,O\
One component at a time (X Ty )1 (X +y )1 /




