
Physics 331: Euler’s Equations 

 

Fri., 12/7 10.7-.8 Euler’s Equations  

Mon., 12/10 Review for Final Project 

 

Handouts: 

 Exam #3 Equation Sheet and sample test 

 Rubber bands for demo 

 

10.7 Euler’s Equations: 

Now we want to start talking about dynamics – how interactions change the rotational motion of 

an object.  Of course, in terms of an inertial reference frame, “Newton’s 2
nd

 Law” of rotation 

says how the torque causes angular momentum to change. 
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While we can describe an object’s rotation about some point in terms of any old coordinate 

system with axes x,y, and z, that generally means dealing with a complicated moment of inertial: 
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If we instead describe that motion in terms of a coordinate system that’s defined by the principle 

axes for the object about that point (note: it is point dependent), we can use a much simpler 

moment of inertia, and often get more conceptual insight. 
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Unfortunately, the nice coordinate system in which to work, that defined by the principle axes, 

rotates with the rotating object, and so doesn’t describe an inertial reference frame – it describes 

a rotating reference frame. 
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ŷ  
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Fortunately, in the previous chapter we dealt with something quite similar – relating how we 

describe the time derivative of the same vector in terms of its projection on the inertial frame’s 

axes and on the rotating frame’s axes.  We saw that in general, for any old vector, Q, 
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. 

If you recall, we’d used this relationship for relating the position vector’s time derivative, 

velocity, in the two frames and relating the velocity’s time derivative, acceleration, in the two 

frames.  Now we want to relate angular momentum’s time derivative:  
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where the derivative of the angular momentum in the (noninertial) rotating body frame (fixed in 

the body) is L


. Combining these two expressions yields Euler’s equation (expressed in the body 

frame): 

LL
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. 

To parallel our work in Chapter 9, we could write this as 

Lframe


 

And call 


Lframe  a “frame torque” – there’s no real interaction here, but the angular 

momentum determined in this frame changes as if subject to such a torque. 

Note: because  itself can change with time, this is a bit trickier to conceptualize than in the 

simple case of a constant  that we considered in Ch. 9. 

 

Okay, so in terms of the principal axes, the angular momentum in the rotating body frame is 

simply: 
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2ê  

3ê  
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ẑ  

1̂e  
2ê  
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And so the cross product is  
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So, written in component form Euler’s equations are: 

13233221111     :ˆ IIIe  , 

21311332222     :ˆ IIIe  , 

32122113333     :ˆ IIIe  . 

Example Torque but constant angular velocity: Suppose the object below with a constant 

angular velocity about the x axis, ˆ x . What is the torque on the object? 
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From before, the principal axes are the ones shown below. 
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The principal moments are:  
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Or flipping that around 

212

1 ˆˆˆ eex  

So,  

The angular velocity is 21
ˆ2ˆ2ˆ eex


  

or 1 2 , 2 2 , and 3 0.  

 

In our scenario, we’re applying whatever torque is necessary to keep this rotation constant, so 

these do not change with rotation, so:  

0321
 . 

The time derivatives of all of the components are zero. Euler’s equations are: 

1323211 III  , 

2131322 III  , 

3212133 III  , 

so the components of the torque are 1 2 0 (because 3 0 and 0321
 ) and: 

2

22

211221213

ma
IIII . 

This torque is the result of forces on the bearings in the directions shown in the diagram 

below.  

 axis 3

 (out of page )

 ax is of rotation

 

Qualitatively, while we’re forcing it to spin about the x axis, it would naturally spin about 

axis e2, that’s the one that would have the most massive objects moving the farthest (this is 

analogous to the way a spinning skater’s arms get flung out unless she forces them to stay in 

– maximizing the moment of inertia).  So the torque that is applied is what’s required to 

oppose the counter-clockwise 45° rotation about the z / e3 axis which would then have the e2 

axis aligned with the x axis.  
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Example: For a top that is symmetric about the axis ˆ e 3 , the other two moments are equal: 

2211 II . Suppose the top is spinning about ˆ e 3  and tilted as shown below. 

 

 

 

 

 

 

 

 

 

The torque is always perpendicular to R  and thus ˆ e 3, so 3 0. This means that: 

0333
I , 

so the angular velocity about the symmetry axis doe not change ( 3 constant). We used 

this yesterday. 

 

Zero Torque   

A special case is Euler’s equations with zero torque, which are: 

323322111 III  , 

131133222 III  , 

212211333 III  . 

Let’s look at two cases of free precession (no torque). 

Two Equal Principal Moments:  

Suppose 2211 II . The last Euler equation with zero torque simplifies to: 

0212211333 III  , 

so: 

constantand0 33
 . 

Define the constant frequency: 
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33311
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b , 

then the other two of Euler’s equations with zero torque can be written as: 
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Differentiate the first and substitute in the second to get: 

1

2

1 b
 . 

If we choose 1 o and 2 0 at t 0, then the solution is: 

1 o cos bt. 

Take the derivative of this solution and substitute that into the equation for 2 above to get: 

2 o sin bt , 

so: 

o cos bt, o sin bt, 3 . 

The angular momentum is: 

333o11o11 ,sin,cos ItItIL bb


. 

So as measured against e1, e2, and e3, the angular velocity and angular momentum rotate or 

precess about the e3 axis with frequency b . 

 

 

Inertial Frame Perspective.  But what does it look like in the inertial frame, say, from the 

perspective of someone who tosses the object in the air and watches it spin and wobble?   

The hook is that, in the absence of an external torque, we know that  

0oL


 

So measured against the inertial x,y,z, the angular momentum must be seen to be constant. 

In the space frame, ˆ e 3 and  rotate around L  (fixed because it’s conserved) with an angular 

frequency 11s IL  (Problem 10.46).  
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The Chandler wobble (period of about 400 days) of the earth is an example of this type of free 

precession that occurs because the earth is spheroidal (bulges slightly at the equator), not 

spherical. 

 

 

Three Different Principal Moments: (“Tennis Racket Theorem”) 

(Barger & Olsson approach, p. 253) Assume 332211 III  

Define the positive constants: 
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and rewrite Euler’s equations without torque as: 

3211
 , 

1322
 , 

2133
 . 

 

Suppose the object is rotating mostly about the axis of the intermediate moment of inertia: 

23122 ,,ê


, 

then 2 constant because 1 3  is very small (product of two small numbers). Treat 2 as a 

constant in the first and third equations: 

3211
 , 
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1233
 . 

This is similar to what we had for two equal moments, except the signs are both negative. 

Differentiate the first equation and substitute in the second to get: 

1

2

2311
 , 

which has the solution: 

tt
BeAet

  

1
312312 . 

Plug this into the equation relating 1
  and 3 to get: 

tttt
BeAeBeAet

  

1

3  

21

312

3
312312312312 . 

The rotation about the axis with the intermediate moment is unstable because rotations about the 

other two axes grow exponentially. The approximation that 1, 3 2 is not valid for long. 

 

Suppose the object is rotating mostly about the axis of the smallest moment of inertia: 

1
ˆ e 1, 2, 3 1, 

then 1 constant because 2 3 is very small (product of two small numbers). Treat 1 as a 

constant in the first and third equations: 

3122
 , 

2133
 . 

These combine to give: 

2

2

1322
 , 

which has the solution: 

tCt  sin 3212 . 

The other solution is: 

tCt  cos 321

2

3

3 . 

The rotation about the axis with the smallest moment is stable because rotations about the other 

two axes oscillate. The same is also true of rotation about the axis with the largest moment. 

DEMO: The results above are often called the Tennis Racket Theorem. The rotation about the 

principal axes with the smallest and largest moments of inertia are stable and rotation about the 

principal axis with the intermediate moment of inertia is unstable. This can be demonstrated with 

a book by putting a rubber band around it to keep it closed.  

 


