Phys 331: 10.1-.2 Center of Mass & Rotation about a Fixed Axis

Fri., 11/30 ‘10.1-.2 Center of Mass & Rotation about a Fixed Axis ‘

Mon., 12/3 10.3-.4 Rotation about any Axis, Inertia Tensor Principle Axes

Tues. 12/4 HW10a (10.6-.22)
Wed., 12/5 10.5-.6 Finding Principle Axes, Precession

Thurs. 12/6 HW10b (10.36, 10.39)
Fri., 12/7 10.7-.8 Euler’s Equations

10.1 Properties of the Center of Mass:

Pretty much everything can be split into CM & relative parts!

The definition of the location of the CM for a system of particles is:
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where m,, is the mass at the position 7,, M is the total mass, and p is the density. Usually, we
calculate one component of the CM at a time! For example, the z component is:
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Example: 10.3
Where’s the Center of Mass of this?

Intuitively: Given the x-y symmetry, it will be on the z-axis; 4/5 of the mass is in the x-y
plane and 1/5 is a distance H above, so the center of mass will be 1/5 of the way up from the x-y
plane.

Mathematically,
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Example: 10.5 (modified)

Find the Center of mass of this 1/4 of a sphere

Given the Symmetry, it will be along the Z axis
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Taking the differential morsel of mass to be a pancake of volume dV = 7 %dz = 7 @
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and the density is €% = v So,
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To find the volume, which is in the denominator, we’d do a similar integral, but without the extra
factor of z:
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For the half-sphere, z runs from 0 to R (note, if we had some other fraction of a sphere, z would
simply run over a smaller range.)

The total momentum for the system is

F=3p, =MR,

and the net external force on the system is



Fo = P = MR.

which means the CM moves like a single particle of mass M subjected to the net external force.

The total angular momentum about an origin O is:
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where 7, is the position relative to O.

We can also describe the position of each mass in the system by the position R of the CM and
the position 7! relative to the CM (see the diagram below) by:
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Substituting in the relation above, we get:
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Factor out the terms that are not summed over to get:
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The “weighted” sum of the positions relative to the center of mass is zero, because 7/ =7, — R
and (the final two terms are equal by definition):

Zmaﬁ; = Zma(7a —E)z Zmajf'd —{Zma]ﬁ = Zma?a ~MR=0.

The summation in the second term is zero because:

This leaves:



which means that the angular momentum can be broken into two parts:

L= Z(motion of CM )+ Z(motion relative to CM )

By analogy to the earth’s motion, we can label these as orbital and spin parts:

L=L_+L
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where Zorb = R x P. The rate of change of the orbital angular momentum is:

The first term is zero because R || P, so using Newton’s second law, F =P, gives:
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so once again the CM acts like a particle of mass M subjected to the net external force.

The rate of change of the total angular momentum is:
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However, the terms involving internal forces all vanish assuming that they obey Newton’s 3™
and are central. For example, consider the two terms that involve the force of particle 1 on
particle 2 and that of particle 2 on particle 1:
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In this way, each internal force term disappears, so what’re we’re left with are just the external
forces:
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so the rate of change of the spin angular momentum is (13 X is the external force on m,):
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The total kinetic energy for a system is:

The speed squared can be expressed in terms of the velocity of the CM and the velocity relative
to the CM:
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We have already shown that the middle term is zero, so the kinetic energy can be split into two

parts:

|T =T (motion of CM)+ T (motion relative to CM)|

10.2 Rotation about a Fixed Axis:
Suppose a body is rotating about a fixed axis, which we will call the z axis, so @ = (0,0,@). The

origin O lies somewhere along this axis of rotation. Imagine the body divided into several small

masses m,, with positions 7, (see the diagram below).

The angular momentum relative to the origin (or any point on the axis of rotation) is:
L=Y1,=>mJ, xv,.

The velocity of the mass at 7, = (x,,,y,.z,) is:
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The total angular momentum is:
Lx = _Zmaxazaa)’



L = Zma(xi +yiy).

In Chapter 3, there was a brief mention that the angular momentum is not necessarily in the same
direction as the angular velocity, but we ignored the components that were perpendicular to the
angular velocity. The z component can be written as:

Lz = Zmapia) = IZC(),

where p, =+/x_+ . is the distance from the axis of rotation and the moment of inertia about
the z axis is:

L=Y.mp.
The total kinetic energy of the rotating body is:
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is related to the moment of inertia for rotation about a fixed axis.
The other two components can be written as:
L =10 and L =10,

where the products of inertia are:

IXZ = _Zmaxaza and Iyz = _Zmayaza '

DEMO: Bars perpendicular to the axis and at an angle. When spun the one at an angle “wants”
to wobble because its angular momentum is not along the axis.

Example: Find the moment and products of inertia for rod of mass M and length L in the xz plane
at an angle of 30° with the z axis which passes through the middle.
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The rod extends a length Lsin30° = /2 in the horizontal direction and Lcos30° = V3L/2 in
the vertical direction.




Divide the rod into slices. A representative one at x of width dx is shown above. The moment
of inertia about the z axis is (since y = 0 for each piece):
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The products of are inertia are (since y = 0 for each piece):
Iyz :_Zmayaza = O’

and (since X« _tan30° = z, = \/gxa):
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