
Phys 331:  Ch 5.  Damped & Driven Harmonic Oscillator     1 

 

 

 

White boards and pens 

Ladder 

O’scope & Fourier Synthesizer & speaker 

Examples and Exercises: 

Before plowing ahead, I want to take a moment to pause and work with what we’ve met so far.  Here are 

the key relations: 

Euler’s Relations 
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Taylor Series 
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Hook’s law 
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(Linear) Damped Oscillator 
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(Linearly) Damped & Driven Oscillator 
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Exercises 

I want you to get a little experience using these. 
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5.7 -.8 Fourier Series 

                                                      Summer Research Presentations 

6.1-.2 Calculus of Variations – Euler-Lagrange 
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Pr. 5.29 

Example: (similar to Ex. 5.3) Suppose o 10  rad/s, o 20 2 rad/s, 

f0 1000 m/s2 , and 4  rad/s  (only difference from Ex. 5.3). If the oscillator starts at rest 

at the orign, find and plot the function for position as a function of time. Compare with the 

results for Ex. 5.3. 

The frequency for the undriven oscillator (and the homogeneous solution) is: 
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9.987 . 

The amplitude of the particular solution is: 
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1.177 m, 

and the phase angle is: 
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0.0465 radians. 

The general solution for an underdamped, driven oscillator can be written as: 

x t Acos t e t B1 cos 1t B2 sin 1t , 

where the coefficients B1 and B2  must be determined from the initial conditions xo vo 0. 

From the equation above: 

xo Acos B1, 

B1 xo Acos 0 1.177 m cos 0.0465 rad 1.176 m. 

Taking the derivative of x t  gives: 

v t Asin t e t B1 cos 1t B2 sin 1t 1e
t B1 sin 1t B2 cos 1t , 

vo Asin B1 B2, 

B2

1

1

vo Asin B1

1

9.987
0 4 1.177 m sin 0.0465 rad 1 2 1.176 m , 

B2 0.807 m. 

The graph of the solution is shown below (solid line) along with the solution of Ex. 5.3 

(dashed line) where the driving frequency is 2  rad/s . The steady state solution for this 

example has a slightly larger amplitude because the driving frequency is closer to the natural 

frequency. It also lags a little farther behind the driving force. 
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Fourier Series 

This is one of those very powerful ideas in physics: any periodic function can be resolved into a 

(potentially infinite) discrete sum of sines and cosines of frequencies in the harmonic series with 

a fundamental frequency of the periodic function. 

The book doesn’t mention it, but there’s the extension that any non periodic function can be 

resolved into a (potentially infinite) continuous sum of sines and cosines with a continuous range 

of periods.  For example, a delta function (an isolated spike) can be built of sines and cosines.  

But we’ll just concern ourselves with the periodic functions.   

You actually use this fact every day, all the time.  Every time you hear a sound, your ear 

mechanically decomposes it into the “pure tones” that make it up and send signals to the brain of 

the appropriate strength for each pure tone in the sound you’re hearing.  It can do this because 

different locations in your inner ear (which are connected to different nerve fibers) resonate at 

slightly different frequencies. 

 

Here’s what the theorem looks like mathematically. 
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That’s a fine idea and all, but not very useful if you can’t figure out what the coefficients / 

amplitudes of each term are.  Fortunately, that’s pretty easy to do if you know the function 

you’re expressing: 
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I do just cosine terms, they’ll then do Sine terms. 

 

Now, we could, merely by observation, note that the second integral is 0 since it’s the product of 

an even and an odd function, thus itself an odd function, integrated between symmetric points 

about 0.  Or we can show it’s fate. 
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Clearly something special happens when n = m since we’ve got these terms with numerators and 

denominators that go to 0; we’ll look at the other case first.   
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mn  since n and m are integers.  So the first term dies. 

As for the second term, 
2
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mn  so evaluating it at its two limits 

kills it off.  So all terms in the sum vanish except, possibly, the n =m, so we’ll look at that 

specifically. 
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Similarly,  
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Now let’s put this to use.  The book did the simplest periodic function – the square wave.  Let’s 

try the triangle wave.   

 

Fourier Synthesis machine – build some 

 

Sawtooth 
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Fourier Solutions to Damped-Driven Oscillator 

The relevance to this chapter, on harmonic oscillators, is that, if the driving force for a harmonic 

oscillator can be expressed as a sum of cosines, then the solutions can be expressed as the sum of 

solutions for each individual cosine driving term. 

More formally, if we have 

tfxxx Dnocno cos2    where 1DDn n  

Just to be a little specific, let’s say that we’re in the under-damped situation, . Then we 

know that the solution is, in its most general form 
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Similarly, if the driving force had a different frequency, say 11, 1 DnD n  

We’d have the same set of solutions, but all n’s would be replaced by n+1. 
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Now, if we had a complicated driving force, of tftf DnnocDnocn 11, coscos  

Then a solution would be  
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Adding the left sides and the right sides gives 
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Well, if that’s the case, then there’s nothing to stop us from extending this logic to an infinite series. 

Say the driving force is some periodic function, F( t) which can, of course, be expressed as 
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Then the solution, the position of the driven object, as a function of time is 
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RMS Displacement: Parseval’s Theorem 
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Average 
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As we say when doing similar integrals, the only ones that survive are same trig function with same 

integer 
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The leading term comes from when n=m=0 and the cosine integrand is 1. 

So, 
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