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Fri. 1/29 Ch 3, 4.5, 6.5: AC Circuits Lab 2 Notebook 

Mon. 2/1 

Wed. 2/3 

Thurs. 2/4 

Fri. 2/5 

more of the same  

Quiz Ch 3, Lab 3: AC Circuits 

more of the same 

Ch 4.2-.3, Ch 5: Transformers, Diodes, & Power Supplies 

 

HW3: Ch3 Pr 2,6,7*, 8*, 11,12,16 

 

Lab 3 Notebook 

 

Equipment 

 O’Scope 

 Fourier Transform box 

 Speaker 

 Necessary cables and connectors 

 

Handout: 

 Lab #3 

 Practice with Phasors 

 

Topics: 

AC terminology for sinusoidal signals: 

1. Sizes of voltages and currents: ANY of these can be used in Ohm’s Law 

a. Peak value (amplitude) 

b. Peak-to-peak value (twice the amplitude) 

c. Root mean square (rms) – related to average power dissipated 

2. Period, frequency, & angular frequency 

3. Phase – leading and lagging 

Fourier decomposition – only need to figure out response of circuits to sine waves 

Reactance & Inductance – using Ohm’s Law & Kirchoff’s Rules for AC circuits 

Phases of components - ELI the ICE man (emf is voltage) 

Phasors – similar to vectors, represent size and phase of inductances 

Calculations for various filters 

Study List for Quiz #3:  

1. Sine waves – amplitude, frequency, angular frequency, period, and phase. 

2. Reactances and impedances of R, L, and C - complex number (j-operator) representation. 

3. Using the phasor representation to calculate the magnitudes and phase angles of voltages 

and currents. 

 

Equation List: 
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?Reactance, Impedance, and phasors.. what are the importance of these?  They help 
us move into analyzing AC circuits.  Then when we add in Fourier’s theorem, we’re 
really able to analyze circuits with any varying input signals.  Think audio 
electronics – the input signals are definitely varying.? 

 

 

Ch 3 AC Circuits I 

 

3.1 Intro. First we dealt with DC circuits, more specifically, circuits with constant voltages 

and currents.  Next we considered transients – how circuits respond when the input 

voltage changes from one steady state to another.  Now we’re moving on to constantly 

oscillating input voltages; how do circuits respond to these? 

Through this chapter we develop and work with tools for handling sinusoidally varying 

voltages.  Now, that might seem of fairly limited use; however, the reading from chapter 

4 points out that any complicated signal can be built out of  sinusoidally varying ones of 

different amplitudes, frequencies, and phases.  More about that later, but for now, if that’s 

true, then the tools we’ll develop here are actually of much broader utility for they can be 

applied to each sinusoidal ‘component’ of a more complicated signal. 

 

3.2 Sine. You’re no doubt quite familiar with this, but since we’ll be dealing with it a good 

deal, it’s worth a quick review.  Say a voltage varies sinusoidally, i.e., as a function of 

time it looks like 

tVtv p sin  

where  

Vp is the amplitude, a.k.a. peak value, of the voltage 

 is the angular frequency in radians / sec 

 it's related to the frequency and period via 
T

f
2

2  

 is the “phase” or „offset‟ angle. 

Here‟s how they all fit together on a plot 

 

 

 

 

 

 

 

 

 
Could you go over the derivation for the root-mean-square current?  

 RMS  
 If you‟re probing a circuit with an oscilloscope, you can actually see the time varying 

signal, as we did in lab; however, if you‟re using a multimeter, you can‟t, or if you could, it 

would just be a bunch of flickering numbers and hard to make sense of.  Quite often, it‟s handy 

to get some single, representative value from a multimeter (they sure are more compact and 

easier to carry around.)  The obvious one is the amplitude. Vp; however, for more practical than 

T = Period 

Vp= amplitude 

/  

offset 
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theoretical reasons, multimeters don‟t give that.  Instead, they give something that‟s known as 

the RMS, or Root Mean Square, value, where the Mean is taken over a period. 
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For seeing why the integral evaluates to this, recall that sin
2
+cos

2
=1.  Thus, 

Tdtdttt

T

o
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Draw pictures of sin
2
 and a picture of cos

2
 for a full period; clearly, they have the 

same area under their curves, so if their sum is 1T, then each one must 

individually contribute half of that, ½ T. 

 

 Similarly for a sinusoidally oscillating current. 

2

p

rms

I
i  

Note: that ½ came because we were dealing with a very specific function.  If the signal 

had a different functional behavior, it would have a different integral, and a different 

numeric factor would result (this will come up on a homework problem.) 

 

 AC with a Resistor 

 

 Let‟s treat a very simple circuit  

 

 

 

 

 If  )sin()( tIti ps , what‟s ?)(tvR  

 Ohm‟s Law:  )sin()sin()()( tRIRtIRtitv ppR  

 Clearly, the current and voltage amplitudes are related by:  

RIV ppR .   or  R
I

V

p

pR.
  

And we can write,  

)sin()( . tVtv pRR  

 For that matter, the root mean square values are related by  

RIV rmsrmsR.  
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 Energy dissipation / Power. 

 An interesting side note is the energy dissipated by an AC circuit.  As the current and 

voltage are constantly fluctuating, so must be the power, but we can at least speak of the average 

power, per period.  Now energy‟s being dissipated by the resistor (when a lot of current passes 

through a resistor you can easily feel it warm up, so the energy is then dissipated just as from any 

other hot object.) 

 

 At any givne moment,  

)()()( tvtitP R  

So averaged over one period, 
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Conveniently, that‟s exactly what you get if you multiply the Irms and Vrms: 

 

rmsrms
RpRp

VI
VIVI

P
222

 (the sign just indicates that the energy is flowing out). 

 
Calculating the impedance of components.  
1) I dont understand impedance and it's equation that describes it.  Z=R+jX  what 
does each variable represent? 

 

3.3 Reactance, Impedance, and Phasors 
A single resistor circuit is easy, it get’s a little more complicated if you’ve got a single 

capacitor or a single inductor, and much more complicated if you’ve got combinations.  

To handle these, we’ll make some new definitions (Reactance and Impedance) and 

invoke some new mathematical tools (Phasors.) 

 

Capacitive Reactance 

 

 

 

 

 

Okay, again, say that )sin()( tIti p , what‟s ?)(tvc  

vs(t) vc(t) 
i (t) 

C 
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 )sin()(
2. tVtv pCC  

  (writing it this way will be useful later) 

Now the amplitudes are related by 

 C

p

pC
X

CI

V 1.
;    Capacitive Reactance 

 This factor then plays a similar role to that of resistance in determining how the circuit 

component reacts to having a current driven - what amplitude voltage is necessary to drive what 

strength current.  This defines the “Capacitive Reactance.”  Depending on the frequency, the 

capacitor could require a very large or a very small voltage to drive the same current onto it.  The 

higher the frequency, the less the capacitor impedes current flow (logically, it has less time to 

charge up, so it acquires less charge which then produce less field opposing current flow). 

 

 

Energy Dissipation 

 

Qualitative: 

Think of the analogous system: you can put energy into a spring by compressing it, and 

you can recover that energy by letting the spring decompress; even over just the compression, no 

energy is lost, it‟s just converted from one form to another, and over one full cycle of 

compression and relaxation, you‟re back where you began – the exact same amount of energy 

back in the exact same form.  The same is true for a capacitor – you trade the kinetic energy of 

moving charged particles for potential energy of stored charged particles / strong electric field, 

and then you set them moving again – no energy is lost by the capacitive action.  (In point of 

fact, charges accelerate when you charge up or discharge a capacitor, thus some energy is lost to 

radiation). 

 

Quantitative: 

 

 

  

 The 0 comes about because the “averaging” requires integrating cos*sin over one period 

and that comes to 0 
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Inductive Reactance  
 Similarly, if you have just an inductor, the circuit evaluates as follows 

 

 

 

 

 

 

Ask them to do: 

 )sin()cos()sin(
)(

)(
2

tILtILtI
dt

d
L

dt

tdi
Ltv pppL  

 )sin()(
2. tVtv pLL  

  (writing it this way will be useful later) 

So the voltage and current amplitudes are related by 

 L

p

pL
XL

I

V .
 

 

 

 

 

 

 

 

Now we have the inductive reactance LX L
 determining how much voltage is required for a 

given current. 

 

 

Energy Dissipation 

The math is essentially the same as for the capacitor – no energy is lost due to the inductive 

effect.  (Again, radiation does occur when currents speed up or slow down, so some energy is 

radiated away). 

 

 

 

 

Complex circuits (analyzed in the complex plane) 

This is all good and well, and rather manageable for single-component circuits, but what if 

they’re all mixed up?  What if you have a circuit with a capacitor and an inductor, or an inductor 

and a resistor? Or all three?  One can actually slog through the math of it using the tools we 

already have, but there’s a slicker way.  Mind you, it’s a little more mathematically abstract, but 

when it comes right down to it, it’s easier to do. 

 

Magnitude & Phase affects – calls for 2-D vectors. Each component affects the voltage in two 

ways: it affects the amplitude and it effects the phase angle (notice that the voltage across a 

capacitor or an inductor is out of phase with the current.)  That sounds like something that can be 

represented by a 2-D vector in some abstract mathematical space.  Of course, vectors are 

cumbersome – you’ve got two components to deal with, you’ve got to be careful how you 

vs(t) vL(t) 
i (t) 

L 
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multiply them and add them…Now, a really concise way of dealing with 2-D vectors is going to 

the Complex plane.  The plane may be complex and novel, but the math is mostly simple and 

familiar.   

 

You’re familiar with working in the regular 2-D plane.  Say (where y and x are just mathematical 

coordinates, not real spatial coordinates) 

 

Off to Mathland: introducing Phasors and the Complex plane 
 

 

 

 

 

 

 

 

In terms of these coordinates, we might write  

yVxVyVxVV yx
ˆsinˆcosˆˆ


.   

For that matter, now’s a good time to recall two useful relations: 

      

x

y

yx

V

V

VVV

1

22

tan
 

 
Q:  2)I'm not familiar with their polar coordinate notation.  p. 51 has a bunch 
of examples.  What does the backslash followed by underlined angles mean? 

You may be familiar with the notation ,VV


 for a 2-D vector.  The book uses the 

notation VV


 to mean the same thing.  Since most of us aren’t familiar with that, I 

won’t personally be using it, but you should feel free to. 

 

Even handier than the real x-y plane is the Complex real-imaginary plane.  

 

 

 

 

 

 

 

 

 

In place of x̂  we just have 1, and in place of ŷ  we have j where 1j  (the other standard 

symbol, i, would too easily get confused with current in this context.) 

In terms of these coordinates, we might write  

sincossincos jVVjVjVVV IR


.   

 

We still have the magnitude and phase relations,  

ŷ  

x̂  

V


 V 

j (Imaginary) 

V


 V 

1 (Real) 
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R

I

IR

V

V

VVV

1

22

tan
 

But we also have  
jej sincos  (write out their Taylor Series’ and you’ll see it’s so). 

So,  
jVejVV sincos


. 

 

With this definition of a phasor, the algebraic rules easily relate to rules you’re familiar with. 

Say,  

jAAA IR


, jBBB IR


 

Then,  

jBABAjBBjAABA IIRRIRIR )()()()(


 

 

Alternatively, for multiplication and division, it’s easiest to use the other representation: 
BABABA jjjjj

eBAeeBAeBeABA


 

Note: you can also multiply this way  

RIIRIIRR

RIIRIIRRIRIR

BABAjBABA

BjABjABjjABAjBBjAABA )()()(


 

The negative sign comes because 111jj .  If you find the magnitude and 

angle of this, it’s the same as you get the other way. 

 

 

For next time:  work on the Practice with Phasors handout. Hand out. 

 
 
pg 52 Low/high pass filter derivation is a little tricky to follow 
 
For RLC resonant circuts, what is the Z vector? 
3)What is the quality factor, Q? how does it relate to a circuit? – we’ll get to 
next time – it quantifies the sharpness of a peak / trough (?) 

 

 

Back from Mathland: using Phasors and the Complex plane for AC circuits 

Let’s see how we can represent the affects of Resistors, Inductors, and Capacitors on oscillating 

currents and voltages using this mathematical scheme.  Unfortunately, this brings in one more bit 

of vocabulary.  The complex-plane vectors that represent the effects of resistors, capacitors, and 

inductors on AC currents are known as their impedances, and I’ll denote them RZ


,
CZ


,and LZ


 

such that, the magnitude of Z is the ratio  

X
I

V
Z

p

p
,  

i.e., the amplitude of this abstract quantity is the very real reactance. 

And the angle of Z is the voltage’s phase relative to what it would be if we had a simple resistor. 
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Resistor 

Say we‟re using a current of )sin()( tIti p , then the voltage across a resistor is simply 

related to the current through it by   

 

)sin()( tRItv pR  

So, 

R
I

V

p

pR.
, and,  

since the resistor defines our reference, there is no phase. 

RZ R


(implicit direction is along the Real axis) 

 

 

Capacitors 

Again, using a current of )sin()( tIti p , the voltage across a capacitor is related to the 

current flowing to it by  

)sin(
1

)(
2
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C
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Amplitude: 
C
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Phase: 
2
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(the factor of j plays the role of ŷ to indicate the direction is along the Imaginary axis) 

 

Inductors 

Again, using a current of )sin()( tIti p , the voltage across an inductor is related to the 

current flowing through it by )sin()(
2

tILtv pL  

Amplitude: L

p

L XL
I
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Phase effect: 
2

 

 

 

 

2
2 LeLjLZ
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(the factor of j plays the roll of ŷ to indicate the direction is along the Imaginary axis) 

 

 

 

 

 

j Imaginary 

CZ


 C
XZ CC
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Real 

j Imaginary 

LZ


 
LXZ LL

 

Real 

RZ


 

RXZ RR
 

Real 

Imaginary 
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3.4 AC Analysis of RC Circuit 

Combinations 

Here’s where this kind of notation and math becomes useful.  If you have a circuit with, say an 

inductor and a resistor in series, then the net impedance would simply be the vector sum of the 

two: 

 

 

 

 

 

 

 

 

 

Next up:  Putting it all to use. 

I’ll do two examples.  The first one I’ll fully narrate, so you can follow what’s going on, but it’ll 

look much longer than it needs to.  The second one, I’ll just crunch through, so you’ll get a better 

sense of how much work is involved. 
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