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Handouts: 
• Equipment:  maglev with superconductor demo (includes liquid nitrogen in a thermos) 

 

Last Time  

Faraday’s law allows us to quantitatively speak about inductance (how a time varying current 
produces a “non-coulombic” electric field which is responsible for an emf that opposes the 
current’s variation).  Through this mechanism, if a current is varying in one wire, it can “induce” 
a current in a nearby wire.  For that matter, it the current itself is subject to the non-columbic 
field – thus “self- induction.”   

Inductors are circuit components that have been optimized to exhibit this effect. 

Energy in the Magnetic Field  

• To the extent that Electric and Magnetic fields quantify interactions, it makes sense that 
we can phrase the energy invested in those interactions in terms of the fields, and thus, 
conceptually abstract from thinking of the energy as associated with the interactions but 
with the fields.  We’d gone down that path for Electric fields in the very simple case of a 
capacitor.  We found that we could phrase the energy invested in pilling charges on a 
capacitors plates could be phrased in terms of the associated electric field as  

• 2
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• Now we’re positioned to do the same thing for the energy invested in setting up a current 
in a solenoid. So, here we go. 

• As always, when a charge is moved across a potential difference, work is done on the 
charge (just like a mass moving from one elevation to another has gravitational work 
done on it). 

• VqW ∆−=  

• The rate at which this work is done we call Power:    
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• If we take Dt to be the time for the charge to clear the voltage difference, then we can call 
q/Dt the current. 

• VIP ∆−=  

• Now let’s specifically consider a voltage that’s established by a time varying current: 

• 
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• So, the rate at which energy is being transferred to these charged particles is   
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• Then, the amount of energy transferred in the process of ramping up from 0 current to I is  

• ∫∫ ===
f

i

f

i

LIdt
dt

dI
LEnergydtP 2

2
1

2

2
1  

• Conversely, this much energy would have to be removed from the current in the solenoid 
if the current were turned off.  So there is this much energy ‘stored’ in the current 
configuration.  

• Then again, corresponding to ramping up I current is ramping up B magnetic field where, 

for our solenoid,  
d
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= .  

• So we could say that this much energy is invested in the field configuration, and we can 
even phrase the energy strictly in terms of the field:  
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• So our energy can be rephrased as  
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• where the term in brackets is the volume of the solenoid, so we can rephrase this as  

• 2
2
1 B
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Energy

oµ=  

• Though derived and justified in a very specific case, this is a very general result –the 
energy associated with setting up a magnetic field (by getting currents flowing) per 
volume through which the field exists is this. 

• I should reiterate that you can equivalently think of this energy as a property of the 
current configuration.  This would suggest that you don’t absolutely need the concept of 
the magnetic field – it’s just handy.  The same was true about the energy associated with 
an Electric Field / a Charge Configuration.  However, just as with the electric interaction, 
I don’t see any way around treating the field as real when charges accelerate.  Then they 
shed energy – radiate, and it’s got to go somewhere – into the field. 

• Exercises for Ch. 22 

 

 

The Character of Physical Laws: (the name of a nice little book by Richard Feynman) 
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• I disagree with some of the details, but not the spirit of this section of the chapter.  At 
the heart of the physics program is making observations about nature; from those, you 
try to deduce the most fundamental and concise truths, and the ramifications.  These 
most fundamental truths are unexplained.  We can state them and use them, but we 
don’t know why they are the laws of nature.  One of major program in physics is 
discovering the fundamental truths and that often leads to unification – realizing that 
something we thought was fundamental actually followed from something else.  For 
example, all magnetic and electric phenomena (including Faraday’s law) seem to 
follow from Coulomb’s law and relativity.  But why are Coulomb’s law and relativity 
the way they are?  We don’t know – we might be able to rephrase things to give 
conceptual tools, and to subtly change the question (like, ‘why is the speed of light 
constant?’), but underlying these two are two things we just haven’t explained.   

• At some point, even in physics, a dialog with a three-year-old (who incesintly asks 
“why”) ends in “no one knows.”  That said, we keep pushing in hopes that some day 
we’ll be able to move one more fact from the unexplained to the explained side of the 
ledger. 

 

Differential Form of Faraday’s Law: 

• The amount that the electric field (the non-Coulomb part) curls around a point is 
related to the rate of change of the magnetic field there: 
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• But recall that in the previous chapter we’d defined (cast in vague / general math terms) 
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• At the time, the vector we were considering was, B, the magnetic field, but generally, this 
is what we mean by the curl of a function.  

• Applying that to Faraday’s relation gives 
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• Similarly for the x and y components, so  
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• we also showed that  ×∇=
r

curl  

• So we now have  



Wednesday, April. 1, 2009  4 

• 
t
B

E
∂
∂

−=×∇
r

rr
 

• This is perfectly equivalent to Faraday’s Law.  

• So, thus far we have these laws: 
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• In Ch. 23, we will fix up Ampere’s law, then we’ll have the complete set of Maxwell’s 
equations! 

Armed with these, we can tackle something pretty exotic: 

Superconductors: 

• Qualitative Description.  

• Superconductors are famous for having no resistivity.  As the book also notes, it 
follows that they have peculiar magnetic properties.  Here’s a very qualitative 
explanation.   

• Cooper Pairs.   

• Electron Density / Lattice Periodicity Recall our picture of a conductor: an 
electron sea against the backdrop of periodic ion cores.  Consider just one electron 
moving through a conductor.  To zeroth order, we might imagine that it swims 
along against a uniformly positive backdrop.  But, look a little closer, the positive 
charges are localized on the periodically located ions.  The electron is attracted to 
the ions, so its path reflects the periodicity of the ion lattice.  In particular, it 
would prefer to spend a little more time closer to an ion.  Now imagine a whole 
stream of such electrons – they’ll have a higher density near the ions than away 
from them.  A stream headed in a particular direction might have a density like: 

 

 

 

 

 

x 

Electron density 
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• Note that electrons flowing in the exact opposite way would have the exact same 
density profile as would our stream.  

 

• Electron – Phonon interaction: a wake.  Enough about how the ions impact the 
electron flow for now, now let’s consider how the electron flow impacts the ions.  
Just as the ions attract the electrons, the electrons attract the ions.  Imagine just 
one electron swimming along.  Where ever it is, it draws the nearby ions slightly 
toward it, but since these ions are a bit massive and are bound elastically to each 
other, they’re a little sluggish to respond and the scenario looks much like a boat 
leaving a wake across the surface of water – the moving electron leaves a “wake” 
of ion displacement.  Should another electron come along soon after the first, it 
will encounter this “wake.”  If it ‘rides in the wake’ it’s a bit easier going.  This 
phenomenon is familiar in many mediums: birds fly in formation to take 
advantage of each other’s wakes, and I often amuse myself during my son’s bath 
time by ‘pulling’ his rubber ducky around with out actually touching it – the wake 
of my hand draws the duck along.  

• Phonon-mediate pairing.  Back to our picture of streams of electrons.  Recall 
that an electron stream moving to the right has the same density pattern as one 
moving just as fast to the left – they can perfectly ride in each other’s wakes.  In 
this way, their ways are eased.  They are referred to as a “Cooper Pair” (after the 
fellow who first recognized that this could happen.)  Of course, the downside of 
pairing up like this is the familiar electrical repulsion two electrons feel for each 
other.  Which effect dominates determines whether or not pairs are formed, and 
thus whether or not a material is superconducting (Abrikosov p334… (the 
discussion focuses on electrons near the Fermi level, presumably because only 
these have neighboring free states into which they can move, should a field be 
imposed, and thus only they ultimately contribute to currents, perhaps the pairing 
happens for lower energy electrons too, but they’re electrically irrelevant). 

• One great feature of this pairing is that, since the electrons are swimming like a 
school of fish, all coordinated, they not only ease the way for each other, the 
continuous flow can build into the flight plan deflections around impurities and such.  
In this way, collisions with impurities that impede lone electrons are avoided – like a 
school of fish swimming around some kelp.  Meanwhile, random thermal jiggling of 
the ions can interact with the electrons, but the effect is either that they are too small 
to impede them (adsorbed into the flow) or are large enough to break a cooper pair – 
rendering them ‘normal’ electrons again.  Then again, ‘normal’ electrons will 
sometimes meet and pair up – at a given temperature, these two processes are in 
equilibrium and determine the population of paired electrons. 

• The resistivity of ordinary materials decreases to a non-zero value as the temperature 
approaches absolute zero.  For superconductors, the resistivity drops to zero below a 
critical temperature TC . A current that is started in a superconductor can run for years! 
(no energy transfer) 
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• No Resistance – No Drude Model: E field means acceleration.  Without 

reisistance, we no longer apply the Drude model: It’s not the electron’s drift velocity 
that’s proportional to an imposed electric field, it’s the electron’s acceleration that is 
proportional.  

• Magnetic Effects.  Now think about Faraday’s law: while the magnetic flux is 
changing, an emf is induced, and that accelerates (as opposed to ‘maintains’) a 
current.  But this accelerating current produces a changing flux of its own, and in the 
opposite direction of the original one.  The current will accelerate and accelerate until 
– it’s changing flux counters that due to the withdrawl of the magnet – then there will 
be no net emf and the current will maintain its new value.  The result is that there’s a 
feedback loop so that there’s no net change in magnetic flux – if there was flux 
through the material when it went superconducting, then the flux stays, even when 
you remove the source (the superconductor turns into an electromagnet), and if there 
was none before, then there never will be one, even if you bring a magnet near.  A 
superconductor is like a perfect mirror for magnets. 

  
• Type I superconductors “expel” the magnetic field when they become 

superconducting, which is known as the Meissner effect. This was an experimental 
surprise that can be explained with a quantum mechanical model (BCS theory). If a 
magnet is brought near a superconductor, there must be induced currents which 
produce a magnetic field in the opposite direction inside the superconductor. Since 
  
r 
B = 0 inside, Ampere’s law tells us that the current must also be zero inside –they 

flow only on the surface! (otherwise, we’d have 
r
I

B o

π
µ
2

= inside the superconductor.) 

 

• Quantitative Description 

• Now we can at least sketch an argument for their being neither current nor field inside 
a superconductor. 
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• What is that current?  Imagine the process of turning on the current by turning on an 
external magnetic field.  Turning on the external magnetic field means creating a 
curled electric field:  

• 
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E
∂
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r

rr
    Eq. 1 

• These fields will exist both inside and outside the superconductor (what counter fields 
the superconductor can generate is another matter). 

• En lieu of any resistance, wherever there is electric field, there’s an acceleration of 
charge:  

• EJ
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• holds (note that now the rate of change rather than the current itself is proportional to 
E).   

• Ampere’s Law gives us another relationship between current density and magnetic 
field. 

• JB o

rrr
µ=×∇     Eq. 3 

• Now we have three equations and three unknowns (E, B, and J); that should sound 
promising.  They can be put together to solve for B or J (or E for that matter) 
independently.* 
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• A function who’s second derivative is itself times a constant… 
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δ =  is the “London” penetration depth, which is on order of 10-7-10-

8m. 
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*For instructor’s eyes only: (more detailed derivation of London length) 

If we Curl both sides of equation 2, we can bring in Faraday’s Law to relate the current 
density to the magnetic field: 
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this case (p. 330) 
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So, to within a time- independent constant, k, the term in the brackets is zero: 

 BJ
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But we know that initially J = B = 0 which implies that at that time (and so, for all time) k 
=0.   
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Now, Ampere’s Law provides a second relationship between the magnetic field and the 
current: JB o
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Substituting this in gives 
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In general ( ) BBB
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satisfy  Eq. 1) 

where 
nq

m

o
2µ

δ =  is the “London” penetration depth, which is on order of 10-7-10-8m. 

•  

Demo: float a magnet above a piece of superconductor 

• The superconductor acts like a magnet with poles facing the opposite way, so it repels the 
bar magnet. There is “feedback” because the superconductor’s current changes as the 
distance of the magnet changes. 

• Destroying Superconductivity 

• Magnetic Field.  If a superconductor is exposed to too large an external field, Hc, the 
superconductivity is destroyed.  This can be simply understood in terms of the effects of a 
magnetic field on the members of the cooper pairs – say the field points up, one half of 
the pair is moving right and the other half is moving left.  In the presence of this field, the 
right bound one will want to arc counterclockwise up while the left bound will want to 
arc counter clockwise down – the field tries to split the pair.  If the field is strong enough, 
this can overcome the interaction that binds the pair together. 

• Temperature.  If the superconductor is too hot, superconductivity can be destroyed.  At 
any temperature, there is a rate at which cooper pairs are formed and there’s a rate at 
which they are broken by random thermal jiggling of the ions.  The latter rate is 
temperature dependent – the hotter it is, the more powerful jiggles there are, and thus the 
more likely that a pair would get knocked apart. The balance of these two processes 
determines the equilibrium population of cooper pairs.  Only at low temperatures is that 
equilibrium population substantial.  

 


