

 $\vec{v}_{E.i}$ Example Gravitational System: Earth and Sun

 $\vec{v}_{E.f}$

 m_{S}

 $r_{E \leftarrow S.f}$

$$m_{E}$$

System= Earth + Sun

Active environment = none

 $r_{E \leftarrow S.i}$

$$\Delta E = W_{system \leftarrow ext} = 0$$

$$\Delta E_{E,S} = \Delta E_{rest,E} + \Delta E_{rest,S} + \Delta K_E + \Delta K_S + \Delta U_{E,S} = 0$$

 $K_{E,f} + U_{E,S,f} = K_{E,i} + U_{E,S,i}$

$$\Delta E_{E,S} = \Delta K_E + \Delta U_{E,S} = 0$$

$$=\Delta K_E + \Delta U_{E,S} = 0$$

$$\frac{1}{2}m_{E}v_{E.f}^{2} - G\frac{m_{E}m_{s}}{r_{ESf}} = \frac{1}{2}m_{E}v_{E.f}^{2} - G\frac{m_{E}m_{s}}{r_{ESi}}$$

$$-G\frac{m_E m_s}{r_{ESi}}$$

Which of the following graphs of U vs r represents the gravitational potential energy, U = -GMm/r?

Different Initial Speeds / kinetic Energies, Different Paths

(orbit noncircular, with energy vs position.py)

In which graph does the cyan line correctly represent the sum of kinetic energy plus potential energy?

Conceptual Understanding from Energy Diagrams Ex. Nuclear Potential

Conceptual Understanding from Energy Diagrams Ex. Nuclear Potential

Conceptual Understanding from Energy Diagrams Ex. Nuclear Potential

The system is a comet and a star. In which case(s) will the comet escape from the star and never return?

Force as negative gradient (3-D slope) of **Potential Energy**

small change in potential

$$dU_{1,2} = -\vec{F}_{1\to 2} \cdot d\vec{r}_{1\to 2} = -\left(F_{1\to 2.x}dx + F_{1\to 2.y}dy + F_{1\to 2.z}dz\right)$$

Say only moves in the x direction, then

$$dU_{1,2} = -F_{1\to 2.x}dx$$
 so $-\frac{dU_{1,2}}{dx} = F_{1\to 2.x}$

Similarly, if only moves in the y direction, then

$$dU_{1,2} = -F_{1\to 2.y}dy$$
 so $-\frac{dU_{1,2}}{dy} = F_{1\to 2.y}$

or, if only moves in the z direction, then

$$dU_{1,2} = -F_{1 \to 2.z}dz$$
 so $-\frac{dU_{1,2}}{dz} = F_{1 \to 2.z}$

Moving in all directions,
$$\vec{F}_{1\rightarrow 2} = \left\langle F_{1\rightarrow 2.x}, F_{1\rightarrow 2.y}, F_{1\rightarrow 2.z} \right\rangle = -\left\langle \frac{\partial U_{1,2}}{\partial x_{1\rightarrow 2}}, \frac{dU_{1,2}}{dy_{1\rightarrow 2}}, \frac{dU_{1,2}}{dz_{1\rightarrow 2}} \right\rangle$$

Collective septembers to the contractive septembers of the contrac

Gravitation

$$\vec{F}_{2\leftarrow 1} = \frac{1}{4\pi\varepsilon_o} \frac{\mathbf{M}_1 \mathbf{M}_{22}}{\left|\vec{\mathbf{r}}_{2\leftarrow 1}\right|^2} \hat{\mathbf{r}}_{2\leftarrow 1}$$

$$G = \frac{16.67}{4\pi\varepsilon_0} \times 100^{19} \frac{N \cdot m^2}{(\kappa g^2)^2} \qquad \hat{r}_{2 \leftarrow 1} = \frac{\vec{r}_{2 \leftarrow 1}}{|\vec{r}_{2 \leftarrow 1}|}$$

$$\hat{r}_{2\leftarrow \overline{1}} = \frac{\hat{r}_{2\leftarrow 1}}{|\vec{r}_{2\leftarrow 1}|}$$

Gravitation Potential Energy

$$U_{1,2.electric}$$

$$|r_{1\leftarrow 2}|$$

$$U_{1,2} = \frac{1}{4\pi\varepsilon_o} \frac{|\mathbf{q_1 q_2}|}{|\mathbf{r_{1\leftarrow 2}}|}$$
like charges

opposite charges

Example: Ionize Hydrogen. In a hydrogen atom the electron averages around 10⁻¹⁰ m from the proton. When a hydrogen atom is ionized, the electron is stripped away. What is the change in electric potential energy when such an atom is ionized?

System= electron + proton

away. What is the change in electric potential energy when such an atom is ionized?
$$r_i = 10^{-10} m \qquad r_f \approx \infty \qquad U_{e,p.elect} = \frac{1}{4\pi\varepsilon_o} \frac{q_e q_p}{|r_{e\leftarrow p}|} \qquad \text{Active environment = none}$$

$$U_{e,p.electric} \qquad r_{e\leftarrow p} \qquad Comparison: Electric vs. Gravitational$$

$$U_{e,p.electric} \begin{vmatrix} r_{e \leftarrow p} \\ U_{e,p.elect} = \frac{1}{4\pi\varepsilon_{o}} \frac{-e^{2}}{|r_{1\leftarrow 2}|} \\ \Delta U_{e,p,elct} = \frac{1}{4\pi\varepsilon_{o}} \frac{-e^{2}}{|r_{f}|} - \frac{1}{4\pi\varepsilon_{o}} \frac{-e^{2}}{|r_{i}|} = \frac{e^{2}}{4\pi\varepsilon_{o}} \left(\frac{1}{|r_{i}|} - \frac{1}{|r_{f}|}\right) - \infty$$

$$\Delta U_{e,p,elct} = \frac{1}{4\pi\left(8.85 \times 10^{-12} \frac{C^{2}}{Nm^{2}}\right)} \left(\frac{\left(1.6 \times 10^{-19} C\right)^{2}}{10^{-10} m}\right)$$

$$Comparison:$$

$$Electric vs. Gravitational$$

$$U_{e,p.elect} = \frac{1}{4\pi\varepsilon_{o}} \frac{-e^{2}}{|r_{i\leftarrow 2}|} - \frac{1}{4\pi\varepsilon_{o}}$$

 $500 \frac{10^{-10}}{Nm^2} \int \frac{10^{-10}}{m} \int \frac{10^{-10}}{m} \int \frac{9 \times 10^9 \frac{Nm^2}{C^2} (1.6 \times 10^{-19} C)^2}{(6.7 \times 10^{-11} \frac{Nm^2}{kg^2})(9 \times 10^{-31} kg)(1.7 \times 10^{-27} kg)}$ Or in eV's (divide by electron charge)

Or in eV's (divide by electron charge)
$$= 2.3 \times 10^{-18} J_{\frac{1e}{1.6 \times 10^{-19}C}} = 14eV$$

$$\frac{U_{e,p.elect}}{U_{e,p.grav}} = 5.6 \times 10^{39}$$

Return to Rest Energy and Mass

Pair (electron and positron) Annihilation

$$E = m_e c^2 + m_e c^2$$

initial final
$$e^- + e^+ \rightarrow \gamma + \gamma$$

Electron and positron Two photons (light pulses)

$$F_{e \leftarrow p} \approx \infty$$

$$E = 2m_e c^2 = 2E_{\gamma}$$

$$|r_{e \leftarrow p}| \quad (0.511 MeV / c^2)c^2 = E_{\gamma}$$

$$0.511 MeV = E_{\gamma}$$

 $E = m_{n}c^{2}$

Return to Rest Energy and Mass

Neutron Decay

initial final

$$n^0 \to p^+ + e^- + \overline{\nu}_e$$

Proton, electron, and neutrino

Nearly massless Finally infinitely far apa $E = m_n c^2 = m_e c^2 + m_p c^2 + m_v c^2 + K_e + K_p + K_v + U_{e,p} + U_{e,v} + U_{v,p}$ Finally infinitely far apart

$$E = m_n c^2 = m_e c^2 + m_p c^2 + K_e + K_p + K_v$$

 $r_i \approx \infty$

$$(K_e + K_p + K_v) = m_n c^2 - (m_e c^2 + m_p c^2)$$

$$= 939.6 MeV - (0.511 MeV + 938.3 MeV) = 0.79 MeV$$

Mass as Energy and Energy as Mass

Box o' decaying Neutrons

 $U_{e,p}$ $|r_{e \leftarrow p}|$ $E = E_{rest} = m_{box}c^2 = \sum_{v} ((m_v + m_e + m_p + m_v)c^2 + K_e + K_p + K_v + U_{e,p})$ Viewed from outside all. particles Peaking inside

Box's mass *includes* internal kinetic and potential energies

Return to Rest Energy and Mass

Nuclear Binding: Iron nucleus

If an iron nucleus were disintegrated, how much K + U energy would be consumed /produced?

initial final
$$Fe_{56}^{26} \rightarrow 26\,p^{+} + 30n \qquad M_{Fe,nuc} = 52107 MeV/c^{2}$$
 Iron nucleus Protons and neutrons
$$m_{n} = 939.9 MeV/c^{2}$$
 Noticeable?
$$E_{i} = E_{f} \qquad m_{p} = 938.3 MeV/c^{2}$$

$$E_{r.Fe} = \sum_{all.\,particles} (E_{r} + K) + \sum_{all.\,pairs} U$$

$$m_{Fe}c^{2} = 26 \cdot m_{p}c^{2} + 30 \cdot m_{n}c^{2} + \left(\sum_{all.\,particles} K + \sum_{all.\,pairs} U\right)$$

$$m_{Fe}c^{2} - \left(26 \cdot m_{p}c^{2} + 30 \cdot m_{n}c^{2}\right) = \left(\sum_{all.\,particles} K + \sum_{all.\,pairs} U\right)$$

$$52107 MeV - \left(26 \cdot (939.9 MeV) + 30 \cdot (938.3 MeV)\right) = \left(\sum_{all.\,particles} K + \sum_{all.\,pairs} U\right)$$

$$-482 MeV = \left(\sum_{all.\,particles} K + \sum_{all.\,pairs} U\right)$$

$$all.\,particles$$

$$all.\,pairs$$

$$52107 MeV - (26 \cdot (939.9 MeV) + 30 \cdot (938.3 MeV)) = \left(\sum_{all. particles} K + \sum_{all. pairs} U\right)$$

$$-482MeV = \left(\sum_{all.particles} K + \sum_{all.pairs} U\right)$$

Rest and Electric-Potential and Kinetic

A U-235 nucleus is struck by a slow-moving neutron, so that the merge and become U-236, with mass M_{U-236} This nucleus is unstable to falling apart – fission. One way it could do so is to first slosh into something of a dumbbell shape, now most of the into two symmetric nuclei, Pd-118, with mass M_{Pd-118} , each has ½ the original number of protons, i.e., q_{Pd} = 46e. Having fallen apart, the two palladium nuclei no longer experience a Strong interaction holding them together, just the Electric repulsion of each other's protons. Subsequently, they accelerate away.

- a) What's the final speed of one of the Pd atoms, when they have sped far, far apart?
- b) What is the distance between the Pd atoms just after fission?

