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11 Fri., 11/15 10.6-.8 Scattering  RE 10.b 

12 

Mon., 11/18 

Tues. 11/19 

Wed.,11/20 

Lab 

Fri., 11/22 

10.9-.10 Collision Complications: Inelastic, Relativistic, & Quantized  

 

10.5, .11 Different Reference Frames 

L10 Collisions (ballistic pendulum?) 

11.1 Translational Angular Momentum  Quiz 10 

RE 10.c             

EP9  

 

 (Rep of Washinton’s 3/2 visits Thurs night 7pm) 

RE 11.a; HW10: Ch 10 Pr’s 13*, 21, 30, “39”,  

 

Equipment 

 Lab carts and track (not air track) & cart weights (black bars) 

 Hover pucks (maybe) 

 Collsion ppt 

 08_Rutherford_dist.py, and Scattering.exe 

 

 

From Last Time 

 

So, before the test, we’d started thinking about collisions 

Collision – short, strong interactions; can neglect all other interactions during collision. 

 

We’d started by looking at just 1-D collisions. 

 

 Review with ppt’s questions 

Ch. 9 Collisions: Exploring the Nucleus 

 Collision:  A relatively brief and strong interaction. 

 System = carts.   

o Let’s take our system to be the two carts on the air track, and our time 

interval to be just before to just after they collide.   

 System = carts.   

o Let’s take our system to be the two carts on the air track, and our time 

interval to be just before to just after they collide.   

o  

o  

o Then 
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  if t is if t is small enough. 

 

o Demo: Maximally (Perfectly) Inelastic.  fsmallfbig vv ..
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o Demo:  Perfectly Elastic. (collide carts and bounce magnetically).  Now, 

in this case, fsmallfbig vv ..


, we still need a second equation if we want to 

solve for two unknowns.   What other relation holds through this 

collision?  Conservation of Energy. 

o 
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o aptapbbt pppp ...
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o Putting these together when big was initially at rest, we go  

 

 

 

 

 Projectile & Target. 
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8.3 Scattering 

 Last time, we looked at head-on collisions.  We employed conservation of energy and 

conservation of momentum to predict the after-math of the collisions, and we got 

familiar with the range of possible out comes (depending upon the relative masses of 

the colliders and their relative velocities.) 

 Now we’re going to consider the more general case of an off-axis collision.  Of 

course the result is the colliders bounce off at different angles – requiring  2-D 

description. 

 Such collisions play a major role in particle physics where the behaviors of particles 

when they collide gives us important information about their properties such as 

charge, mass, and even internal structure.   

 Today, we’re going to walk the line between really getting into the math and staying 

qualitative. 

Demo:  hover pucks collide off-axis. 

Demo: Alpha_on_alpha.py 

Ppt. 
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 Conservation of Momentum:  

 
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 Conservation of Energy: 
o Energy is a vector quantity, so we get the exact same, single, equation we did 

for a 1-D collision. 
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 Let’s say we choose our before and after at points of the same 

potential; most likely 0 potential, for the objects are no longer 

interacting. 

o Elastic Collision. 
 If the collision is elastic, we can say that the internal energies of the 

two objects are the same before and after the collision (they mightn’t 

be during the collision, but we’re not concerned with then.) 
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o Three Equations / Four Unknowns. 
 Three Equations. Written this way, we have three equations 

(momentum x, momentum y, and energy)  

 Four unknowns. Four unknowns (magnitude of final momentum 1, 

magnitude of final momentum 2, direction of final momentum 1, and 

direction of final momentum 2). 

 Fourth piece of info. 

 We’re going to focus a bit today on that 4
th

 piece of 

information. 

 Collision geometry.  If you’re going to predict all of the final 

parameters, you’re going to need one more piece of 

information, specifically, the direction of the force of collision 

– that gives the direction of the change in momentum for each 

object.  Generally, you need to know something about the 

collision itself. 

o For our two pucks, that’s a matter of geometry: what 

are the radii of the two pucks and how do they compare 

with the initial puck’s path – this determines exactly 

where the two pucks collide. 

o For a collision of two charged particles, you need to 

consider the force law of the interaction. 
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 Only 3 unknowns (know / measure one final)  Then again, in many 

situations, you are able to measure the initial and final momentum 

vectors (magnitude and direction) of one of the particles, and thus you 

can deduce the recoil of the other.  For example:  if you fire alpha 

particles at gold nuclei, you can’t see the gold nuclei, but you can 

dictate the alpha particle’s initial momentum and measure it’s final 

momentum, and so deduce the gold nucleus’ recoil. 

o Equal Masses.  Our two pucks are pretty much equal masses.  We get an 

interesting result in this special case of mp = mt = m. 

 From conservation of energy: 
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 From conservation of momentum: 

o tfpfpi ppp


 

 Then, squaring it gives 

o 
tfpftfpfpipipi ppppppp

2  

 or 

o 
tfpftfpfpi ppppp


2222  

 Comparing this with the equation from the conservation of energy, 

clearly the last term must be 0.   The dot product is tptfpf pp cos .  

 Q:  There are three factors here, so there are three ways their product 

can be zero.  What’s one? 

 projectile never hit target, so ptf = 0 

 projectile hit target head on, so projectile stopped and target 

carried, so ppf = 0 

 the angel between the two final momenta is 90     

 

Demo: Try to collide pucks in the three ways (may need someone to help catch pucks) 

o Notice that I was able to predict the angle between the two particles that 

collided, but I couldn’t predict the direction they’d go relative to the initial 

direction. 

o What was it about the collision that determined that?  

 

 

 

8.3.1 Impact Parameter 

  Which case we have (and exactly how the 90° is oriented) depends on the 

collision itself.  For our pucks, it’s simple geometry:  the ratio of the projected 

center-to-center distance with the pucks’ radii.  This distance is referred to as the 

“impact parameter, b.” 

 if the impact parameter is larger than the sum of the two pucks’ radii, then there’s 

a miss: 
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 If the impact parameter is just smaller than the combined radii, then the target 

puck barely moves and the projectile puck is barely deflected. 

 

 

 

 

 

 

 If the impact parameter near ½ the combined radii, both pucks depart fairly 

symmetrically. 

 

 

 

 

 

 

 

 As the impact parameter approaches 0, the target receives more of the 

momentum, until b = 0 and the projectile stops upon collision. 

 

 

 

 Generally.  Say our colliders aren’t equal mass; the picture’s qualitatively 

very similar:  the angle between the two out coming momenta depends upon 

the impact parameter. 

 

 

 

8.4 Discovering the nucleus inside atoms 

Turning this reasoning around, say you don’t know how big your target object is, 

say an atomic nucleus, then observing how projectile objects, say alpha particles, 

scatter off of it tells you about the impact parameter and the size of the target. 

 

 It was actually through scattering experiments, and impact parameter 

considerations, that the nucleus was discovered and its structure is probed.   

 

8.4.1 The Rutherford experiment 

 Alpha particles (He nuclei) make convenient, fairly massive, and + charged 

projectiles.  Rutherford’s assistants accelerated these at a target of thin gold foil 

and then observed where they hit a phosphorescent screen on either side of the 

foil.   

 The interaction of an alpha particle with the nucleus is governed by 
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.  In lab you’ll have the opportunity to model this experiment. 
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Demo:  08_Rutherford_dist.py 

  For a material of uniform mass and + charge distribution, one would 

expect little significant scattering.  Note the lack of small-angle scatters and the 

occasional backscatter.  

8.4.2 Computer modeling of the Rutherford Experiment 

 

8.4.3 Distribution of scattering angles 

 Looking at the simulation, you can see that, given the range of possible ‘impact 

parameters’, there’s a corresponding range of scattering angles.  For hard objects, 

like pool balls, there’s a pretty simple geometric relation between target & 

projectile size, impact parameter, and resulting scattering angle.  

 In Rutherford’s experiment, and others like it, the target can’t actually be seen, 

indeed, the scattering is used to deduce the target’s size.  In this context, one fires 

a barrage of projectiles in the general direction of the target & the fraction that 

scatter at different angles tells you what fraction of your beam is taken up by the 

target. 

8.4.3.1 Cross section 

 In a hard collision, like that of pool balls, the projectile must be aimed within the 

geometric radius of the target in order for there to be any interaction / any 

scattering.  Thus, by looking at the distribution of scattered projectiles, it’s quite 

easy to figure out the size, or more specifically, the cross-sectional area of the 

target.  

o Cross-section, Darts, and Probability.  Let’s say I’m good enough at 

darts to be guarantee that I’ll hit the board somewhere but it’s completely 

random as to where.  Take the bull’s-eye to be the target. Then the 

probability that I get a bulls-eye is simply the ratio of the bull’s-eye cross-

sectional area to that of the whole board:  
board

bull

bull
A

P .  

Similarly:
board

pts

pts
A

P
10

10
… 

 

 

 

 

 Cross-sections, alpha-particles, and scattering angles.  However, when we’ve 

got more long-range interactions, such as that of an alpha-particle with a gold 

nucleus, the alpha-particle needn’t actually hit within the geometric radius of the 

nucleus to get deflected. We still use the language of “cross-section.” 

o If we say the bull’s-eye is like actually hitting the particle head-on, 

making the alpha-particle bounce back, then the next ring out is like 

coming quite close to the nucleus and deflecting sharply; the next ring out 

is coming not so close, and deflecting a little less sharply… 

o Again, the probability of each type of deflection is proportional to the 

corresponding ring’s cross-section. 

Demo:  08_Rutherford_dist.py rotate to look head on and see bulls eye 

 

8.4.4 Conservation Laws Vs. Details of the interaction 



Physics 231 Ch 10 Day 2 2013 7 

 Cross-section / Scattering Angle & Force law.  Now imagine we had two 

targets, one is a gold nucleus, with its 79 protons, and one is a nucleus with twice 

as many protons.  You shoot randomly at both with alpha-particles of the same 

energies.  Let’s say that if you hit within these ranges of the center of a gold 

nucleus, you will be deflected by these angles: 

Demo:  08_Rutherford_gold.py rotate to look head on and see bulls eye, 

see plot of Probability of scatter vs. angle. 

  

 

 

 

 

  

  

 Since each ring out has a bigger area, the number of alpha-particles scattered at 

these different angles is greater for the bigger ring / smaller scattering angle.  The 

distribution of scatters looks something like the plot beside it. 

 

 Now imagine the nucleus with twice as many protons, at any given distance from 

this nucleus, the force is twice as strong as for the gold nucleus.  Qualitativley, 

how should our ring of targets look? 

 

  

 

 

 

 

 

 

Experience the same deflection at a greater distance / impact parameter 

Demo:  08_Rutherford_zerconium.py rotate to look head on and see bulls 

eye, see plot of Probability of scatter vs. angle. 

 

 Different force law 

o For that matter, say we’ve got a different force law, say the force dies off 

exponentially instead of like 1/r
2
.  How would the target look differently? 

 Rings would be narrow near the center and quite broad outside. 

o How would the count of scatters vs. angle look? 

 The small angle scatters would be much more popular. 

Moral:  Scattering experiments can be used to discover the nature of the target and the 

force law by which it interacts with the projectile. 
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