Today:	Review for Exam 3	HW20, HW18Redo
Tuesday 1pm:		HW19-20 Redo's
Wednesday	Exam 3	Equation Sheet

Administrative

- I will grade HW 20 immediately \& put it outside my door. Pick it up at your leisure, correct it, and slip it and HW19Redo under my door by Tuesday at 1 pm to get them graded.
- I will post HW 19 \& 20 solutions on the web at that time.
- Today's review material is posted; I will add a sample equation sheet to it
- a copy of last year's test with solutions is posted

Exam 3 Review

Covered: Ch 20.5, 21, 22, 23
Not: 21.6*, 21.7.2,3**, 21.8, 21.9, 22.6, 22.7, 23.5
*we worked with similar material in lab, but discussed it in terms of forces, not torques
**Yes -straight wire, No - current loop or solenoid.
Format:
Same as Exam 2 but no longer problems - all worth the same

Must know:

Especially: Anything that you saw in Lab + Lecture + Homework
Anything the book presents in a beige box
Lab: Principles, Techniques, and Math employed in Lab

Equation Sheet:

- Hand in with test
- No words
- No pictures beyond a triangle for the trig functions, and the symbols for circuit elements
- An equation can appear only once, in a single form

$$
\text { Ex. } F=I L B \sin \theta_{I B} I=\frac{F}{L B \sin \theta_{L B}} \text { one or the other, not both. }
$$

You will hand in your equation sheet with the test.
If I see anything that shouldn't be there, the pertinent exam questions will receive 0 points.

- You'll be given the following units and constants

Units

$B \quad$ Tesla $=\frac{N}{A m p \cdot m}$
Emf \quad Volt $=\frac{J}{\text { Coul }}$
$C \quad$ Farad $=\frac{\text { sec }}{\Omega}$
$I \quad \mathrm{Amp}=\frac{A m p}{\sec }$
$L, M \quad$ Henry $=\Omega \cdot s$

Constants
$\mathrm{e}=1.60 \times 10^{-19} \mathrm{C}, \varepsilon_{\mathrm{o}}=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right), \mu_{o}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{Amps}$

Sample equation sheet

Useful Mathema tical Relations

$(\sin (\theta))^{2}+(\cos (\theta))^{2}=1, \quad \sin (2 \theta)=2 \sin (\theta) \cos (\theta)$
For small angles: $\sin (\theta) \approx \theta, \cos (\theta) \approx 1-\frac{\theta^{2}}{2}$
For circles: $C=2 \pi R, A=\pi R^{2}$ For Spheres: $A=4 \pi R^{2}, V=4 / 3 \pi R^{3}$
If $A x^{2}+B x+C=0$, then $x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

$h=\sqrt{h_{a}^{2}+h_{o}^{2}}$
$\theta=\tan ^{-1}\left(\frac{h_{a}}{h_{o}}\right)$

Physical Relations

$E m f=e m f_{o} \sin (2 \pi f t) \quad I=I_{o} \sin (2 \pi f t) \quad\langle P\rangle=\frac{1}{2} I_{o} \Delta V_{o}=I_{r m s} \Delta V_{r m s} \quad I_{r m s}=\frac{I_{o}}{\sqrt{2}}$

$$
E m f_{r m s}=\frac{E m f_{o}}{\sqrt{2}} \quad \Delta V_{r m s}=I_{r m s} R \quad \Delta V_{o}=I_{o} R \quad F_{\rightarrow q}=q \nu B \sin \theta_{v B} \quad F_{C}=\frac{m v^{2}}{r}
$$

$r=\frac{m v}{q B} \quad m=\left(\frac{q r^{2} B^{2}}{2 \Delta V}\right) \quad F=I L B \sin \theta_{I B} \quad B=\frac{\mu_{o} I}{2 \pi r} \quad E m f=v_{\perp} B_{\perp} L_{\perp}$
$\Phi=B A \cos \phi_{B \perp A} \quad E m f=(-) N \frac{\Delta \Phi}{\Delta t} \quad e m f_{s}=(-) M \frac{\Delta I_{P}}{\Delta t} \quad e m f=-L \frac{\Delta I}{\Delta t} \quad X_{C}=\frac{1}{2 \pi f C}$
$\Delta V_{o . C}=I_{o . C} X_{C} \quad X_{L}=2 \pi f L \quad \Delta V_{o . L}=I_{o . L} X_{L} \quad e m f_{o}=I_{o} Z \quad Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
$I_{C}=I_{o C} \cos (2 \pi f t) \quad I_{L}=-I_{o L} \cos (2 \pi f t)$

Units

$\begin{array}{llllll}B & \text { Tesla }=\frac{N}{A m p \cdot m} & \text { Emf } & \text { Volt }=\frac{J}{\text { Coul }} & L, M & \text { Henry }=\Omega \cdot s \\ C & \text { Farad }=\frac{\text { sec }}{\Omega} & I & \text { Amp }=\frac{\text { Coul }}{\sec } & \Phi & \text { Weber }=\text { Tesla } \cdot m^{2}\end{array}$ $R, Z, X_{C}, X_{L} \quad$ Ohm $=\Omega=\frac{\text { Volt }}{A m p}=\frac{J \cdot s}{\text { Coul }^{2}}$

Constants

$\mathrm{e}=1.60 \times 10^{-19} \mathrm{C}, \varepsilon_{\mathrm{o}}=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right), \mu_{o}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{Amps}$

