Exam 2 Review

Covered: Ch 18, 19, 20
Lightly: 20.11, 20.13
Not at all: $18.9,18.10,19.6,20.5,20.9,20.12,20.14$

Format:

Same as Exam 1. There may be one or two longer problems (such as on the other Exam 2 review posted), but the problem solving technique of last semester will not be required.

Must know:

Especially: Anything that you saw in Lab + Lecture + Homework
Anything the book presents in a beige box, Ex. Conservation of Charge
What each of the equations on the Equation Sheet means
Lab: Principles, Techniques, and Math employed in Lab
What questions or topics would you like me to go over?
I have compiled sample test problems that we can go over.

This is a closed book, closed notes exam. Calculators are permitted. Provide your own equation sheet with no words on it. Point assignments are noted throughout the exam. Partial credit is awarded when work is shown.

Useful Mathematical Relations

$(\sin (\theta))^{2}+(\cos (\theta))^{2}=1, \quad \sin (2 \theta)=2 \sin (\theta) \cos (\theta)$
For small angles: $\sin (\theta) \approx \theta, \cos (\theta) \approx 1-\frac{\theta^{2}}{2}$
For circles: $C=2 \pi R, A=\pi R^{2}$ For Spheres: $A=4 \pi R^{2}, V=4 / 3 \pi R^{3}$ If $A x^{2}+B x+C=0$, then $x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

Physical Relations

$\vec{v}_{\text {ave }}=\frac{\Delta \vec{r}}{\Delta t}$
$\vec{a}_{\text {ave }}=\frac{\Delta \vec{v}}{\Delta t}$
$\vec{F}_{E \rightarrow 1}=q_{1} \vec{E}\left(r_{1}\right)$
$\vec{F}_{1 \rightarrow 2}=k_{C} \frac{q_{1} q_{2}}{r_{1 \rightarrow 2}^{2}} \hat{r}_{1 \rightarrow 2}$
$|E|=\left|\frac{\Delta V}{\Delta s}\right|$
$\Delta P . E_{E, 1}=q_{1} \Delta V \quad W_{1 \rightarrow 2}=-\left(k_{C} \frac{q_{1} q_{2}}{r_{1 \rightarrow 2, f}}-k_{C} \frac{q_{1} q_{2}}{r_{1 \rightarrow 2, i}}\right)$
$\Delta V_{1}=k_{C} \frac{q_{1}}{r_{1 \rightarrow, f}}-k_{C} \frac{q_{1}}{r_{1 \rightarrow, i}} \quad \Delta P . E .=\frac{1}{2} C(\Delta V)^{2} \quad W_{\text {net }}=-\Delta P . E ._{\text {net }}=\Delta K . E$.
$q=C \Delta V$
$C=\frac{\kappa \varepsilon_{o} A}{d}$
$\kappa=\frac{E_{o}}{E}$
$\vec{I}=\frac{\Delta q}{\Delta t} \hat{v}$
$I=\frac{|\Delta V|}{R}$
$R=\rho \frac{L}{A}$
$R_{\text {equivalent }}=R_{1}+R_{2}+\ldots \quad \frac{1}{R_{\text {equivalent }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$
$P_{1 \rightarrow 2}=\frac{W_{1 \rightarrow 2}}{\Delta t}$
$P=I \Delta V$

Useful Constants

$1 \mathrm{mile}=5280 \mathrm{ft}, \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}=32 \mathrm{ft} / \mathrm{s}^{2}, \mathrm{k}_{\mathrm{c}}=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{c}^{2}, \mathrm{e}=1.60 \times 10-{ }^{19} \mathrm{C}, \varepsilon_{\mathrm{o}}=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right)$

