For Monday 9/24, read Griffiths section 2.5.1 and turn in by 9:30 am:

- 1. Conceptual: Compare Griffith's definition of a bound state with Q7.1.
- 2. Conceptual: Compare Griffith's definition of tunneling with Q11.3.
- 3. Easy Math: Let $y = \sqrt{a}[x+(b/2a)]$. Write out the equivalent for $(ax^2 + bx)$ in terms of y instead of x. What is the advantage of this change of variables?
- 4. Real math: The Gaussian wave packet. A free particle has the initial wave function $\Psi(x,0) = Ae^{-ax^2}$, where *A* and *a* are constants (*a* is real and positive).
 - a. Normalize $\Psi(x,0)$.
 - b. Find $\Psi(x,t)$.
 - c. Find $|\Psi(x,t)|^2$. Express your answer in terms of the quantity $w \equiv \sqrt{\frac{a}{1 + (2\hbar at/m)^2}}$.

Sketch $|\Psi|^2$ (as a function of *x*) at *t*=0, and again for some very large *t*. Qualitatively, what happens to $|\Psi|^2$ as time goes on?

- d. Find $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$, $\langle p^2 \rangle$, σ_x , and σ_p .
- e. Does the uncertainty principle hold? At what time *t* does the system come closest to the uncertainty limit?

"For realz" weekly homework due 9:30 am on Wednesday 9/26 is math problems from 9/19, 9/21, and 9/24.

For Wednesday 9/26, read Griffiths' section 2.5 and Q11 and turn in by 9:30 am:

- 1. Conceptual: Are possible energy levels quantized only for bound states? Why or why not?
- 2. Conceptual: State the rules from Q11.4 in terms of mathematical equations. Can you match the rules to equations in Griffiths? If you can, give equation numbers.
- 3. Math: Evaluate the following integrals:

a.
$$\int_{-3}^{+1} (x^3 - 4x^2 + 3x - 2)\delta(x+1)dx$$

b.
$$\int_{0}^{\infty} [\cos(2x) + 5]\delta(x - \pi)dx$$

b.
$$\int_{0}^{+1} e^{(|x|+6)}\delta(x-4)dx$$

- 4. Math: Consider the double delta-function potential $V(x) = -\alpha[\delta(x+a) + \delta(x-a)]$, where α and a are positive constants.
 - a. Sketch this potential.
 - b. Write the schrodinger equation in each of the three regions.
 - c. What is the solution to each of these differential equations?
 - d. What are the boundary conditions?
 - e. Does problem 2.1(c) apply here? Does it help?
 - f. Write the possible solutions for $\psi(x)$.
 - g. How many bound states are there?

For Friday 9/28, read Griffiths' section 2.6 and Q11.2 turn in by 9:30 am:

- 5. Conceptual: What physical properties determine the number of bound states in a finite well?
- 6. Conceptual: How do we determine the number of scattering states?
- 7. Fill in: Derive equations 2.167 and 2.168. Show all steps. Hints:
 - a. First use 2.165 and 2.166 to write C and D in term of F (without A or B).
 - b. Solve for $Ae^{-ika} + Be^{ika}$ and $Ae^{-ika} Be^{ika}$ in terms of sin(2la) and cos(2la) using the double angle formulas in trig.
 - c. Add the equations you get in the previous section to get rid of B and then solve for F in terms of A (eq. 2.168).
 - d. Now subtract the equations to get rid of A and solve for B in terms of F (eq. 2.167).
- 8. Math: Consider the "step" potential: $V(x) = \begin{cases} 0, & \text{if } x \le 0 \\ V_0, & \text{if } x > 0 \end{cases}$ and $V(x) = \begin{cases} V_o, & \text{if } x \le 0 \\ 0, & \text{if } x > 0 \end{cases}$
 - a. Sketch both functions. (This is due with conceptual questions.)
 - b. Show that the reflection coefficients for the two cases are equal when $E > V_0$.
 - i. Start by doing the first case. How many regions are you using? What are your boundary conditions?
 - ii. Write the schrodinger equation in each region and solve. Solutions should be exponentials, not sines and cosines. You should be using k from equation 2.130 and l similar to (but not exactly) equation 2.148. Careful when defining these in terms of E and V_0 .
 - iii. Label your diagrams in part (h) with coefficients like in figure 2.15. Assume wave enters from left. What goes to zero?
 - iv. Apply boundary conditions and calculate the reflection coefficient. (Hint: write as something over $(k^2-l^2)^2$.) Finally, plug back in for k and l to get reflection in terms of E and V₀ and simplify. You should get something ugly over V_{0²}.
 - v. Repeat above for other case.
 - c. What happens when $E < V_0$? Show calculation and comment on solution. Do only for the first case.