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Daily 12.W Wednesday 11/19 Griffiths 6.2 Time-independent Perturbations, degenerate 

 

These next few days, we’ll be looking at ways to get approximate solutions to problems that 

are too difficult to exactly solve. 

6. Time-Independent Perturbation Theory 
 

When the Hamiltonian is slightly perturbed, we posited that it would be useful to express the 

new energies and the new wavefunctions in terms of a power series expansion from those 

appropriate to the un-perturbed Hamiltonian.  That is to say, 
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From there, we followed a logical path to arrive at the expression for the first-order correction to 

the energy, 
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Both of the latter involve identifying  
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Clearly, this factor has trouble if one of the states you’re using to build this correction term, one 

of the o

m ’s, happens to have the same uncorrected energy, o

mE , as the uncorrected state you’re 

looking to tweak, o

n  with o

nE .  That is, if  o

m

o

n EE  =0. 

   

To understand how things go wrong, we can look one step back in the derivation.  That comes 

from the 1
st
-order correction equation which leads to  
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So, if the energies happen to be the same, then we’re multiplying )1(

n

o

m   by zero, so we have 

no way of recovering the value of )1(
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How do we find its value? 

 

6.2 Degenerate Perturbation Theory 
That’s what Degenerate Perturbation Theory addresses.  Or rather, it gives us a way to sidestep 

the question – create linear combinations of the degenerate states, combinations which have 

distinct energies, and use those in your description of the unperturbed system.  Surprisingly, 

though the issue is apparent in the 1
st
-order wavefunction and 2

nd
-order energy corrections, this 

change even effects the 1
st
-order energy correction.   

 

Qualitatively, that can be understood because the different linear combinations of the degenerate 

wavefunctions would ‘ovelap’ with the perturbation differently, and so one combo might gain 

energy due to the perturbation while another might lose energy due to it.  For example, consider 

how sine and cosine are two different linear combinations of e
+ikx

 and e
-ikx

, but one would be 

severely affected by a delta spike at the origin and the other wouldn’t. 

 

6.2.1 Two-Fold Degeneracy 
Suppose we have just two (orthogonal) states that have the same energy under the influence of 

the original Hamiltonian, both o

na   and  o

nb  have energy o

nE  when subject to oĤ .  Of course, 

that means that we can build linear combinations of them which necessarily have the same 

energy, 

 
o
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Can we go over what griffiths means by lifting in the paragraph below 6.18, I don't really 

follow what he is talking about there?"  Jessica    
 

We’ll be interested in two combinations that are orthogonal to each other, so they’re still 

good members of the ortho-normal basis set, and that have different first order energy 

corrections, so when the perturbation is applied, the degeneracy “lifts” in the same sense that a 

http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
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mist lifts or a veil is lifted –the degeneracy is removed and so you can see distinctly (in the 

energy spectrum) that there actually are distinct states., i.e. two states that had the same energy 

with the original Hamiltonian now have distinct energies, and so we can, for example, 

distinguish their presence in the system’s spectrum.  These will be our “good” degenerate 

wavefunctions.  

 

An example is having Helium in the ground state, with the two electrons with the same 

energy- so degenerate spin states.  Apply a magnetic field, and now one has spin that’s aligned 

and one has spin that’s anti-aligned, and there’s an energy difference. 

 

1. Conceptual:  If the states in the unperturbed case are not the good states, what are their 

energies in the perturbed system?  How do they relate to the energies of the “good” 

states? 

They must then be constructable from a linear combination of the good states, and so 

their energies must be a linear combination of the good states’ energies – thus energies 

somewhere between  / less extreme than those extreme ones. 

 

Now, let’s start down the whole perturbation path with this. 

The argument about creating a polynomial in  that we’d started with will still hold, leading to 

the same expressions for 0
th

, 1
st
, and 2
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-order corrections: 

 

...

ˆˆ

ˆˆ

ˆ

)2()1()1()2()1()2(

)1()1()1(

o

nnnnn

o

nnn

o

o

nnn

o

n

o

nn

o

o

n

o

n

o

n

o

EEEHH

EEHH

EH













 

 

Of course, the 0
th

-order relation tells us nothing we didn’t already know.    

 

1st-order energy correction 
To get useful information out of the 1

st
-order relation we’d previously taken its inner product 

with the 0
th

-order wavefunction, but now we’ve got a choice – how about just taking the product 
o

na  or o

nb ? 

 

That gets us 
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Where, as before, we use the hermetian-ness of the Hamiltonian to rewrite the first term, 
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So far, just the same as before, but here’s the new part, substituting in  o

nb

o

na

o

n   , 
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Where the last step on the right hand side used the ortho-normality of the unperturbed basis set 

(these two wavefunctions may have the same energy, but they’re still orthogonal to each other!) 

  

Note:  if  is 0, i.e., the wavefunction wasn’t really degenerate at all, then we just recover 

our result from section 2.1. 

 

Obviously, had we taken the inner product with  o

nb  instead, we would have gotten 
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Naming these inner products o
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The two algebraic relations can be phrased efficiently as a single matrix relation, 
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(here, I’m jumping to the more general phrasing of section 6.2.2) 

 

Then the ‘characteristic equation’ generated by  
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1. Starting Weekly HW: Griffiths problem 6.9 

Exercise:  returning to this, no let’s consider the  
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What are the energies of the ‘good’ eigenvectors for the two degenerate ones? 
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Put together to get the two energies 
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 You get that W13 = W33 = 0 – the perturbation doesn’t affect the third state, but it does 

affect the first, so the degeneracy already naturally separates out.  This is the case Griffiths 

mentions with one of the coefficients being 0, so you already have the good states. 

 

Now try    
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Now you’ll get that there is a W13. 

 

 

2. Starting Weekly HW: Griffiths problem 6.7 parts b and c only.  Hint: for part c, use 

equation 6.22. 

 

So, apparently there are two possible 1
st
-order corrections to the energy corresponding to two 

possible ways of combining o

na  and o

nb . 
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 o

nb

o
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o

n     

 

1. Conceptual: In a two-fold degenerate system, generally the perturbation will break the 

degeneracy.  One state will go to a higher energy and an orthogonal state will go to a 

lower energy.  But, these states may not be the same states used in the unperturbed case.  

Note that there are an infinite number of wavefunctions with the same energy: 

a b     , where a and b are the 2 wavefunctions in the unperturbed case.  If these 

happed to be the states with the most extreme new energies, what are α and β? 

 

In fact, returning to the two equations, 
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Exercise Okay, return to the example we were just working on and find the two “good” eigen 

vectors. 

 

 

Notice that these two combinations are orthogonal.  That’s something Griffiths told us would be 

the case at the outset, but didn’t actually prove (left to Problem 6.6 a) or use. 
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So, as Griffiths had predicted at the beginning of the section, the two linear combinations of 

degenerate states are orthogonal to each other. 

 

However, notice that this doesn’t really solve the whole 1
st
-order wavefunction correction term’s 

problem! 

 

Or does it? 

1st-order Wavefunction correction 
The problem that we’d identified was that we couldn’t use 
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Contributed by the state that was degenerate with the one we were interested in since the 

energies being equal killed off the equation.  However, if we have reason to believe that 
)1(

, n

o

mmnc   actually is zero for this term, then we don’t have to worry.  And it looks 

awfully likely that that’s the case for these special linear combinations.  At least, 
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But we’ve got an expression for + in terms of +, and substituting that in, and doing a little 

algebra (problem 6.6 b if you’re interested), you’ll find that 
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This suggests that, rather than blowing up, 
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and so can be skipped over with only minimal harm to our approximation. 

So, when you’re after the 1
st
-order correction to one of the degenerate states, first rephrase in 

terms of these “good” linear combinations that are still orthogonal and still have the same 

energy, but smoothly evolve into states with extreme, non-degnerate energies, then you can sum 

as before: 
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Can we go over the theorem about hermitian operators commuting?" Casey P,  

Griffith’s Theorem 
Griffiths asserts that (and I’ll use my notation here) if o

a  and o

b  (degenerate eigen functions of 
oĤ ) are also eigenfunctions of Hermitian operator Â with distinct eigenvalue 

aa a Â  and 
bb b Â , and   0ˆ,ˆ HA , (Griffiths says it commutes with HHH o  ˆˆˆ , but 

doesn’t use that fact), then o

a  and o

b are the ‘good’ eigenfunctions, i.e. 
nbW . 
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But that 0 can’t be because a*=b; by supposition, they don’t equal each other.  So we’re left with 

the conclusion that  
0abW  

 

http://www.google.com/moderator/#11/e=213ead&u=CAIQytbjmuXUx99L
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But what good is this theorem?  It gives you a quick-ish way to check a reasonable guess at the 

solution, without having to do as much hard work of deriving it. 

Also can we do an example where we use this theorem? Jessica 
 

Here’s an example,  In problem 6.7, you’ll be dealing with waves on a ring.  The wavefunctions 

are  

  Linx

n e
L

x /21    for n = 0, +1,2,… 

Clearly there’s an energy degeneracy for n = +|n|. 

 

When we perturb this system with a dimple at x=0,  
22 / ax

oeVxH  , and we want to know 

how the energies change.  First step, what are the two linear combinations that make the ‘good’, 

states? 

They must have the form    LxniLxni

n ee
L

x
/2/21 




   

And they must be orthogonal to each other. 

 

Here’s my guess: I know two linear combinations of such terms which are orthogonal to 

each other: sine and cosine.  I guess 

 

    Lxn
L

xn /2sin 


   and    Lxn
L

xn /2cos 


   

 

Am I right?  Well, can I dream up an operation for which these are eigenfunctions and which 

commutes with H’?  If so, I’m home free. 

 

In this case, the operation is the parity operator:      xpfxfxfP ˆ  

since        xLxn
L

Lxn
L

xP nn   





 /2sin/2sinˆ  

while        xLxn
L

Lxn
L

xP nn   





 /2cos/2cosˆ  

so the distinct eigenvalues are +1 and -1 

and this has no effect on H’, since it depends on x
2
, so they commute.  

Done.   

6.2.2 Higher Order Degeneracy 
So, the way we set up the problem for doubly-degenerate clearly generalizes; if we have more 

than two states with the same energies under the original Hamiltonian, we can solve for the 

multiple ‘good’ eigenvectors and their first-order energy corrections by solving the matrix 

problem 

 

 

http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss


Phys 341 Quantum Mechanics Day 30 

9  

 



























































..................

...

...

...

)1(











n

cccbca

bcbbba

acabaa

E
WWW

WWW

WWW

 where this is a Hermitian matrix since 
*

baab WW   

 

"Could we go over Example 6.2 or a similar example?" 

Spencer      Post a response 

Admin 

 

 

Example 6.2 is a nice, simple-geometric one: particle in a 3-D cubic box, with added potential in 

the back-left quarter of the box.  Before adding that perturbation, the 1
st
 excited state was 3-ways 

degenerate: you could have extra bumps along x, along y, or along z. 

We can predict what would happen in this case: put the extra potential in one quadrant, and a 

combination that has a lot of concentration there will increase in energy; a combination that has 

little concentration there will decrease in energy.  

 

Let’s walk through his work.  

 

http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#15/e=213ead&t=213ead.5f&q=213ead.7037c2&v=4
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