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11 Fri., 11/14 8.1-.2 WKB Approximation & Tunneling Daily 11.F 

12 
Mon., 11/17 

Tues. 11/18 

6.1 Time-independent Perturbation, non-degenerate 

 
Daily 12.M 

Weekly 12 

 
Daily: Kyle Jacob Spencer Gigja Anton Jessica Sean Antwain Jonathan Casey Jeremy Mark   Connor     Brad 
 

 

Equipment 

 Griffith’s text 

 

Check dailies 

 

Announcements 

 

Daily 11.W Wednesday 11/12  

1. Math: Griffiths 5.15 

2. Starting Weekly HW: Griffith 5.16 

3. Starting Weekly HW: Griffiths 5.18 

 

These next few days, we’ll be looking at ways to get approximate solutions to problems that 

are too difficult to exactly solve. 

8. WKB Approximation 
The first approximation technique that we’ll look at is WKB’s.  The idea starts out rather similar 

to a trick we’ve played twice now – when solving Schrodinger’s equation, factor limiting 

behavior out of your solution.  We did this when tackling the Harmonic Oscillator the second 

time – factoring out the behavior as r goes to 0 and as r goes to infinity, so we could then focus 

on the simpler equation that governs the in between undulations.  We did it again when tackling 

the radial equation for a central potential in 3-D (and you did it on the test when tackling the 

radial equation in 2-D). 

 

The inspiration is that, if the potential varies on large length scale, then on the small length scale, 

the solution should look a lot like it would for a constant potential: 

 

   ikxAex   for E > V,   /2 VEmk     classically allowed region 

   xAex    for E < V,   /2 EVm     classically forbidden region 

 

Of course, over the long length scale, the potential does vary, so the amplitude and the 

wavenumber or decay constant vary with x. 

 

Conceptual Exercise 

Given a potential, sketch a plausible wavefunction (amplitude and wavelength / decay 

length grow where |E-V| is small) 
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To get rigorous about this, we look at the two regions separately. 

 

 

 

 

 

 

Does the WKB approximation mean we can solve quite a bit that was too complex 

before we had this?" Casey P 
 
Yes, it’s useful for potentials that won’t yield exact, analytical solutions or if you just want a quick ball-park 
value.  It’s one of three approximation methods that the text introduces, two of which we’ll looking at.  
They, along with computational approaches like we took early in the semester, are tools for tackling 
potentials that would be too difficult to tackle exactly.   

 

 

"Could we instead talk about an average potential and treat the problem like the ones we 

did in Chapter 2 rather than assume the potential varies slowly? Would the results differ 

greatly?" 
Spencer  
 

That certainly would be the first and simplest approximation.  For some questions, it might be 

good enough.  What it wouldn’t catch is spatial variation in the wavefunction (how its amplitude 

and wavelength might grow or shrink).  I particularly expect that it would work well/poorly for 

states for whom the variation in energy is insignificant/significant compared with the states’ 

energies. 

8.1 The “Classical” Region 
 

For  

  


 xV
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E 



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
  or      
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


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We’ll guess a solution of the form  

 

     xiexAx     

 

with both A(x) and (x) real to help tease apart the undulations and the modulations.  Note: this 

guess is not an approximation, it’s a perfectly valid way of expressing a complex function, but 

we’re hoping it will prove a useful way for the cases we’re interested in – short-scale undulations 

and long-scale modulation. 

 

Plugging in,  

http://www.google.com/moderator/#11/e=213ead&u=CAIQytbjmuXUx99L
http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
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Or using the prime-ing notation to indicate differentiation with respect to x, 
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Or getting all terms on the same side, 
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Now, since A and f are real, we have two completely independent terms that don’t have a prayer 

of canceling each other – everything in the first brackets and multiplied by i, and everything in 

the second brackets.  Yet they add up to 0, which tells us that each of these two terms must 

themselves be 0.    

 

02  AA    and    
 

0
2

2
2

 A
xp

AA


  

The former can be stepped back a pace with the differentiation to read 

   02 



A

x
 

Which requires that 2A  = B, some constant.  Or 



B

A  

Now, Griffiths has C
2
 in place of my B, and so implies, and then asserts that C is real; however, 

we’ve not earned that assertion – for all we know at this point,  is negative. 

Now it’s time for the approximation.  Looking at the other equation, 
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Assume that A”/A << than the other terms.  Qualitatively, that is assuming that the length scale 

over which this amplitude varies is much larger than the length scale over which the phase varies 

or of the wavelength. 

  
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   so, 
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x

xo

xdxp

x)(  which, of course, introduces one arbitrary 

constant since we’ve only constrained the function’s derivative. 
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Then returning to 



B

A , we have 

 

 xp

B
A





 

Now, we’d defined our function in the first place with A real, so B must have the same sign as 

we choose in the denominator. 

 
 xp

B
A


  or defining C to adsorb the constant h-bar and the rooting, 

 xp

C
A   

 

So, the solution is 
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Griffiths points out that this backs up the intuitive rule of thumb we’d been using when sketching 

wavefunctions: the probability of finding the particle at a location is inversely proportional to its 

momentum, thus how fast it’s going at that location. 

 

Example 8.1 Bumpy-bottomed infinite-square well 
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Guess solution of  
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Now, since the function for   /)(  

x

xo

xdxpx  introduces an arbitrary constant in the 

exponent, and that’s equivalent to introducing one in the multiplicative constant C-, we can 

consider it adsorbed into C-.  So we’re free to choose the obvious starting point for our integral in 

this case, 

   /)(
0

 

x

xdxpx , which means   0/)0(

0

0

  xdxp  

For that matter, we can rewrite our guess in the form 

   
 

      xCxC
xp

x cs  cossin
1
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Boundary Conditions 
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    00  a  

Where our requirement that    00  means, like always,  
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Example 1.b 
 Solid conductor with voltage applied across it.  Picking up where the free-electron model 

left off, say we apply a voltage across a conductor to make a current flow.  What would the 

wavefunction and energies be? 

 

The simplest model is an infinite square well with a sloped bottom. 
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Let’s say that  

 

 

 

 

 

Let’s say that   22

2
1 xmxV  , what’s the approximate solution?  

  

 We need     xVEmxp  2 for the amplitude,   /)(
0
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for setting a condition on the energy. 
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And the condition 
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Now,  
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Not pretty.  Transendental relation that sets the allowed E values.  

 

 

8.2 Tunneling 
 

When V > E, we could run through the same argument, but then pop on the world at the end that, 

oops, V > E, so  

        ExVmixVEmxp  22  
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Griffiths warns that one part of our derivation would have trouble, but I suspect that if we were 

careful, the same basic argument would be applicable since experience tells me you can safely 

hold off on ‘fixing’ the sign under the root until the end of your argument. 

 

Now, this is useful for thinking how a wavefunction would propagate through a ‘classically 

forbidden’ region, where E <V. 

 

He sets us up for a particular scenario: 

 

 

 

 

 

 

 

 

 

Now, we can use the WKB approach to find an expression for the wavefunction within the 

barrier.  However, Griffiths uses it to give a ballpark approximation for the particular question of 

tunneling through a barrier. His argument is that, as we know, the transmission coefficient is 
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Griffiths ignores the prefactor (indeed, it would cause real trouble in example 8.2), and 

focuses just on the exponential. 
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Example 2.b 
 The converse of our conductor with a voltage applied across it is a capacitor with a 

voltage applied across it.  The barrier for an electron escaping a material into free space, akin to 

the ionization energy, is known as the “Work function”; you may vaguely remember that from 

the photo-electric effect in which photons had to deliver that much energy to free electrons. 
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What would be the transmission probability? 

 

Note: this is a rather simple model for electrons tunneling between a sharp metal tip and 

conducting sample in STMs. 
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Since this appears in the exponent, this shows the exponential dependence on the separation of 

tip and sample, a. 

 

Example 8.2  Gamow’s theory of Alpha Decay 
 

"Can we go over example 8.2 i got lost in this example?" 

Jessica   Hide responses   Post a response 

EF 

Wf 

Wf 

http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
javascript:void(0);
http://www.google.com/moderator/#15/e=213ead&t=213ead.5d&q=213ead.70104f&v=4
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Admin 

Yes I think that it would be good to go over example 8.2. It looks like p(x)=E-E here and I 

am no sure why. 

Kyle B,  

No, it’s still V(r) – E, but he happened to note that, at the turning point, r2, where p = 0, V(r2) = E  

 

I would also like this. 

Gigja 

I would also like for us to go over this example as well; as for the p(x) function, I don't recall 

seeing it in the example. 
Jeremy, Redlands, CA 
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