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Wed. 10/8 

Fri., 10/10 

3.1-.2 Formalism: Hilbert Space & Observables (Q5.6, 6.2-3) 

3.3-3.4 Formal: Hermitian Operator’s Eigenstates & Statistical (Q11)  Columbia Rep 3pm in AHoN 116 
Daily 6.W 

Daily 6.F 

Study Days  Mon 10/13 – Tus 10/14 

7 
Wed. 10/15 

Thurs 10/16 

Fri. 10/17 

3.5 Uncertainty Principle   

 

3.6 Dirac Notation  (Q5.6) 

Daily 7.W  

Weekly 7 

Daily 7.F 

 

Equipment 

 Griffith’s text 

 Printout of roster with what pictures I have 

 Whiteboards and pens 

 

 

Check dailies 

 

Announcements: 

 Exam   

o Opportunity:  Fix for HW points by next Wednesday.  I’ve provided plenty of 

comments to get you started. 

 Columbia 
o This Friday a representative from Columbia will visit to talk about / answer 

questions about the 3-2 program.  There’s no optimal time, but we’ve scheduled a 

session- presentation/open house for 3pm – as long as folks are dropping in in 

AHoN 116.  The front end of this will overlap with some folk’s classes – come to 

after; the back end will overlap with practices(?), leave early. 

 

 

 

Daily 6.M Monday 10/6 Griffiths Appendix A.3-.6 Linear Algebra 

1. Math: A.8  

2. Starting Weekly HW ( A.9) 

3. Math: A.14 

4. Math A.19 

5. Starting Weekly HW ( A.25) 

 

3.1 Hilbert Space 
 So, we’ve been doing this whole, ‘quantum thing’ for a while now, and Griffiths has 

wisely decided to wait until we’ve gotten a little, concrete, experience under our belts 

before casting it all in more general terms.  Of course, that second-day reading from 

Mandl foreshadowed some of this, and so did our early reading of A.1-.2 (might want to 

skim back over) and Monday’s reading of A.3-.6.  Also, this is the language and notation 

that Moore was using from the get-go in Phys 233. 

 So, all put together, this is a bit of a review. 
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 As we know, wave functions represent the state of (our knowledge of) the system; 

specific operators represent performing specific observations to determine values of 

properties like position, momentum, energy, etc. 

 

 Linear Transforms 
He proposes that wave functions are more generally abstract ‘vectors’ and operators act 

upon them to perform linear transforms, the same way a matrix acts on a simple vector, 

as in  

 

ba


M  some new vector // mathematical function 

Or using slightly different notation 

baM ˆ  

 

Okay, let’s consider a concrete example:   
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(a wave function for the infinite square well) 
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Which is indeed a new mathematical function, and we could write that like 

 

   txtxp nn ,,ˆ    

If we wanted. 

 

 Inner product 

Now, for complex vectors, as you’re familiar from A.1-.2, Mandl, and Phys 233, you 

know how we generalize the dot product to be the “inner product”: 

 In one notation, that’s  

ba t


  

where *~
aa t 

  , the complex transpose.  

In another notation, that’s 

ba  

 In either case, what it gets you is ba = 
j

jjbabababa *

3

*
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*
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*

1 ...  

 For convenience, let’s say we have two functions of position, a(x), b(x), then what we’d 

have is  
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Now, rather than having a vector with discrete values, we two functions with continuous 

values.  Then with only a slight bending of our definition, in the continuous limit,  

 

)()( xbxa    dxxbxa
*  

Or 

)()( xaxb =          **
** badxxbxadxxbxa    

 

Normal.  Of course, the function’s we’re interested in are normalized wave functions,  txn , .  

And being normalized, we mean  

 1
2*  









dxdx nnn  

so in our new notation, that would read 

 1 nn  

Also about what hilbert spaces are in the first place Casey P,  

ya I would like to get a clearer definition of a Hilbert Space. The book isn't very definitive 

other than the given equation and that this is home to wave functions. Kyle B, 

I agree, going over this would be nice.  

In addition, could we briefly go over the Gram-Schmidt procedure Jeremy  (for this one, see 

appendix A.1,2)  

 Hilbert Space 

o Seeing as we’re bent on using the language of linear algebra, and thus thinking of 

our wave functions as vectors, they need to satisfy some conditions – ‘live in a 

some vector space.’ 

o Definition of a Vector Space: Recall from Appendix A.1, on vectors, that “a 

vector space consists of a set of vectors together with a set of scalars, which is 

closed under two operations:  vector addition and scalar multiplication (and 

includes the null vector.)   

o Normalized Vector Space?: Now, we wouldn’t be able define a vector space 

with the constraint: 1
2






dx  because the simple sum of two such vectors 

would clearly no longer satisfy the requirement (at the very least, they’d integrate 

to 2. 

o Normalize-able Vector Space? We couldn’t even define a space based on the 

slightly less-restrictive constraint that the functions are normalize-able since that 

wouldn’t include the null vector.   

o Square-Integrable Vector Space: So, the tightest, space-defining constraint we 

can assert is that they’re square-integrable (the integral doesn’t blow up.)  That 

defines “Hilbert Space.” 

 

Again, a concrete example could be the energy eigen functions of the infinite square well: 

http://www.google.com/moderator/#11/e=213ead&u=CAIQytbjmuXUx99L
http://www.google.com/moderator/#11/e=213ead&u=CAIQv9Df9anNxM90
http://www.google.com/moderator/#11/e=213ead&u=CAIQ3Pb8yM2Lz-c1


Phys 341 Quantum Mechanics Day 15 

4  

 

   

        1cossinsinsin

0sinsin0

0

2
2
1

2
12

0

22

0

22

0

22

*

22

0

*

22

















































a

a
n

a

a

a
n

a

a

a
n

aa
n

a

a

a t
am

a
n

a

t
am

a
n

ann

dxxdxxdxxx

dxdxexexdxdx













 

 

And that’s what we get for any realistic wavefunction (that is to say, one who’s square can 

possibly represent the probability density of a real object.) 

 

Orthogonal Solutions 

Now, another property that our “vectors” have is that, if the two vectors you’re taking an 

inner product of are both solutions to the Schrödinger equation (as opposed to one solution and 

one operated-upon solution, which yields a new ‘vector’ / function), then not only do you get 1 

when you integrate  / inner-product them with themselves, but you get 0 when you integrate / 

inner-product them with each other. 

 

0* 




dxmn  

Again, you demonstrated this for the infinite square well. 

 

In our vector notation, that’s 

0 mn  

 

So, just like the x,y,z coordinate axes, they’re not just normal, their orthogonal; they’re 

orthonormal.   

 

Writing these together as one expression, 

mnmn ,  

 

Complete Ortho-Normal Basis Set 

 For a given Schrodinger equation, the usual rule about solutions to differential equations 

applies: once you find general solutions, any other solution is a linear combination of these.  We 

usually find the energy eigen-states, and then yes, any other solution is expressible as a linear 

combination of these solutions.  In that sense, these energy eigen states form a complete, orth-

normal basis set for the region of Hilbert space that is solutions to that particular Schrodinger 

equation.  
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n
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Or, using the ortho-normality, 
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Written in our special vector notation, that’s 
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mn c  

  

"Could we go over when aligned and antialigned spin eigenvectors are supposed to dot 

to 1 or 0? Maybe also how orthonormality is related to this. I'm a bit confused as to 

which eigenvectors match up." 
Anton 

1. Math: Consider the spin eigenvectors (Table Q6.1). 

a. Show that they are orthonormal. 

b. Do they live in Hilbert Space?  Explain.  

3.2 Observables 

3.2.1 Hermitian Operators 

How does Griffiths make the connection between observables and operators? Can we 

go over Example 3.1?" Spencer       
 

Now, given the association of the wavefunction with the probability density, 

  dxxx /Pr)(
2
  

It then made sense that the average position would be  

 

     dxxxdxxxxxx
22

)()(Pr  

And similarly for any other function of x, f(x) 

      dxxxfdxxxfxxfxf
22

)()()()(Pr)()(  

Now Griffiths went through some work in Chapter 1 to derive that 

dxxpxdxx
dx

d

i
x

dt

xd
mp )(ˆ)()()( **  


 

Trivial as it is to say, the expression for average position could be phrased that way too: 

 dxxxxdxxxxx )(ˆ)()()( **    

So he could generally say that the average of any function of x and p could be found by 

sandwiching the appropriate operator in the integral: 

    dxxpxQxpxQ )(,ˆ)(, *    

In our new-found vector-matrix notation, that would look like 

   QpxQ ˆ,  

Breaking that down into two steps, that’s saying you  

 you perform the operation Q upon the “vector” to “transform” into a new vector:  

o Q̂  

 then take the inner product of that new vector with the original vector 

o   

http://www.google.com/moderator/#11/e=213ead&u=CAIQo-y5hou98fI7
http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
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 Real Observables – Hermitian Operators 

 Now, since the observables are necessarily real, we can say that they are they’re own 

complex conjugates: 

o 
*

QQ   

 That seems like a harmless enough statement.  However, that means the same must be 

true of the integrals that are being used to find them: 

        









QQ

QdxQdxQdxQdxQdxQQ

QQ

ˆˆ

ˆˆˆˆˆˆˆ
*****

*
**

*

 

Now, if we saw this relationship for matrices we’d recognize that the definition of a Hermitian 

conjugate, or adjoint, of a matrix Q would be 

 

baba

baTbTa

t

t


TT 

 ˆˆ
  

The matrix applied to the left vector that has the same effect as its adjoint applied to the right 

vector in an inner product.  The two are generally related by  
*~

TT t  

If TT t then we call it “self-adjoint” or Hermitian. 

 

So we apply the same name here, and say that the operators that correspond to real observables 

are “Hermitian”  (note: seems like a fudge since, with the matrices, there’s an explicit complex 

conjugation between an matrix and its Hermitian pair, and a matrix would have to be purely real 

to be equal to its pair and thus be “self-adjoint” or itself a “Hermitian matrix”; however, for the 

operators, there’s an implicit complex-conjugating that comes with changing position, and 

somehow that doesn’t count against the operator’s being called “Hermitian.”) 

 

 

1. Conceptual: Explain all the steps in the derivation in eq. 3.19. 
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3.2.2 Determinate States 
 

Could we go over the derivation of equation 3.22?" Antwain       

 
Early on, Griffiths pointed out that making the separability assumption, that  

     txtx  ,  

Lead us down a path to finding energy “eigen states”.  That is to say, for one of these states  

http://www.google.com/moderator/#11/e=213ead&u=CAIQh82e-eeMnvQC
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    0...
2222  EEEEE  

So there was no spread whatsoever. 

 

Now, he steps back and speaks more generally of such situations.  A “determinate” state is one 

for which a particular kind of measurement’s outcome is perfectly determined – (done correctly) 

repeating the measurement for identically prepared systems will give identical results. 

 

Casting this in the new and general language, calling Q the operator and q the average (and only) 

value that it returns,  

   

    



22

2
2

ˆˆ

0ˆˆ

qQqQ

QQQ

 

But we’ve just said that for observables the operators are Hermitian, that is, we get the same 

result if they’re applied to either vector.  So we can make this look more symmetric: 

      qQqQqQ ˆˆˆ0
2

 

 

The only vector that, dotted with itself is 0 is the null vector: 

  0ˆ  qQ  

If we look a little more closely beneath the formalism, this argument is that, for  

  0ˆ
2






 dxqQ ,  

with an integrand that is inherently symmetric, it must be that the integrand is 

itself 0, and heck, its square root is zero. 

 

That is to say  qQ̂ . 

 

If we were dealing with matrices and vectors, and we had the analogous relation, 

 aa


M   

We’d call the possible constants eigen values and the corresponding vectors eigen vectors.   

 

So 

 Determinate states are eigenfuctions of the corresponding operators. 

 

Can we go over Example 3.1?  

1. Starting Weekly HW (3.6): Consider the operator 
2

2
Q̂

d

d
 , where  is the azimuthal 

angle in polar coordinates, and the functions are subject to the same boundary condition 

shown in eq. 3.26.  Is this operator hermition?  Find its eigenfunctions and eigenvalues. 

 

 

Since this is really how we find the 

average 
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"Can we talk about what it means for a spectrum to be degenerate? Jessica    
 

Example:  It’s hard to imagine in 1-D, but imagine in 2-D or 3-D; heck, you probably already 

met this in Stat. Mech. Thermo – imagine a particle in a 3-D box.  The simplest case of energy 

degeneracy is that a particle oscillating in the x direction but flat in the y and z, one oscillating in 

the y but flat in the x and z, and one oscillating in the z but flat in the x and y all have different 

momentum vectors, but they could have the same wavelength and so same magnitude of 

momentum, and same kinetic energy: the energy state would be 3-fold degenerate: 3 energy-

eigen states all with the same energy (eigen value). 

 

 

http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss

