
Where we’ve been 

Stationary Charges – producing and interacting via Electric Fields 

Steady Currents – producing and interacting via Magnetic Fields 

Where we’re going 

Varying currents and charge distributions – producing and 
interacting with varying Electric and Magnetic Fields 

A step closer to 

Fri., 7.2.3-7.2.5 Inductance and Energy of B   
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Tues. 
Wed. 

7.3.1-.3.3 Maxwell’s Equations  
 
10.1 - .2.1 Potential Formulation  Lunch with UCR Engr – 12:20 – 1:00 
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Inductance    

 What is flux through path 2 due to current following path 1? 
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Equivilantly, can rephrase using product rules, or use A to get same result 
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 Symmetric between 
two loops 
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Inductance    

1 

2 As with Resistance, sometimes it’s easiest to do the geometric 
integral, sometimes it’s easiest to find flux, factor out current, and 
thus find M. 
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Example: Coaxial solenoids of radii a1 > a2 and windings per length n1 and n2. 
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Overlapping volumes 

Demo! 

Faraday’s Law: time varying current in one 
solenoid induces Emf and drives current in other 
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Self Inductance    

Current passing along the loop is itself responsible for flux through the loop 
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Time varying current along one segment of the loop produces field and Emf felt by 
other segments of the same loop.. ẑ
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Example: single solenoid 



Energy to Generate Current    

Consider driving charges around a solenoid.  How much work would you 
have to do to get it going? 
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As you accelerate it up to speed, self inductance 
means a counter force is generated, so you 
must at least provide equal and opposite force. 
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Energy to Generate Current    

Consider driving charges around a solenoid.  How much work would you 
have to do to get it going? 
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Rephrasing in terms of the corresponding field that’s generated,  
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Extrapolating to more general cases, 
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(Griffiths does a more general derivation much 
like he did for the work of generating E field.) 

“Where is the energy stored, field or current?” Neither / both – energy 
isn’t a substance (no “caloric fluid”) to be stored some where.   
It’s kinetic and potential energy, it’s “stored in” the motion of charges and 
their interactions situation of current flowing and field generated. 



Energy to Generate Current    

Exercise:  Work to turn on co-axial solenoids of different wire density, n, and opposite current, I. 
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ẑ

a1 a2 

For an individual solenoid 






outside           0

inside   110

1

In
B





Energy to Generate Current 
(mathematical and general case derivation) 

   

Self-inductance should be a real phenomenon for any current path; the work 
to establish a current along any path should be 
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Rephrasing as sum over a volume 
containing current 

Sending volume to cover all space, surface to 
infinity, where B is presumed to be 0 
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