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Transition. 

So, we’ve just finished talking about a model for electric fields interacting with non-

conductors – microscopic electric dipoles may be induced in response to an externally 

imposed field, and those will naturally generate a field of their own.  We developed some 

specialized tools for dealing with this situation. 

Now we’ll consider magnetic fields interacting with matter.  We will again develop some 

specialized tools for describing how the matter responds.  As when considering the 

electric field, we’ll start microscopic, and then scale up. 

 

Summary 

 

Before we get started, recall from Chapter 5 that the simplest possible current source is a 

current loop.  If you’re observing such a loop from a great distance (relative to its radius), 

then a multi-pole expansion seems a reasonable way to approximate its appearance.  For 

the potential, first non-zero term in that expansion is  
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The corresponding field is just the curl of this, 
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or, if we take m be at the origin and pointing up z,  
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Now, while a single atom is electrically neutral, most single atoms are not ‘current 

neutral’, that is, they have microscopic currents running around them.  While we can’t 

legitimately apply a semi-classical ‘solar system’ model to the particles that make up the 

atoms, if there’s angular momentum, then there’s circulation, and if the things with 

angular momentum are charged, then that spells charge circulation = current.   
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We can get a little more specific about the relationship between angular momentum and 

current, or rather magnetic dipole moment.  Now, the electron cloud about an atom 

necessarily gives proportional mass and charge densities, that is, at any location 
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Let’s compare the magnetic dipole moment associated with an electron cloud and its 

angular momentum. 

Recall that the approach we take in determining a real current distribution’s dipole 

moment is to break it up into current loops, find their dipole moments, and then sum over 

all loops.  With that in mind, we’ll imagine we can do the same to an electron cloud and 

just bother ourselves with looking at one differential current loop and compare the dipole 

moment and angular momentum for it.   
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Now, the way we define the loop is that it’s a path of constant current, where the current 

runs along the path, so v   is constant along it and dl||v (note that you can’t always define 

such paths without the cross-sectional areas needing to be parameterized to varying along 

the length.)  Taking advantage of that,  
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Comparing the two, 

Apparently,  
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Now, this reasoning isn’t perfect, but it gives us the general idea: if a charged particle 

has an angular momentum, it has a corresponding magnetic dipole moment that is 

proportional to it. 

Armed with that knowledge, let’s consider some simple atoms, starting with the simplest 

– Hydrogen.  The proton has rotational angular momentum 
1.ps


 which, about any axis, 

you’d measure to be 
2
1

1.ps .  Ditto for the electron.  Except at very cold 

temperatures, the fields that these two produce aren’t enough to create significant 

interaction; in general, the nuclear angular momentum doesn’t get pinned down except at 

very low temperatures, so, it’s usually a blurry wash – we’ll ignore it. 

Now, let’s add one more proton and one more electron – we’ve made Helium.  The two 

protons tend to anti-align and so do the two electrons, so you’ve got no net angular 

momentum and no dipole moment. 
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Now, let’s add one more proton and one more electron – Lithium.  As with Hydrogen, 

we’ll have one unbalanced spin electron and one unbalanced spin proton, so we’ll have 

dipole moments.  Also, there’s orbital angular momentum.  

Let’s add one more protons and electrons – Be.  The two electrons will be unpaired and 

there will likely be a net orbital angular momentum.  If we add one more though, there 

will be no net orbital angular momentum but there will be spin. 

 

From here, you get the picture.  Almost every single atom, except those with closed 

shells, will have some net angular momentum, and thus a magnetic moment. 

That said, when atoms bond up, they often do so in a way that eliminates angular 

momentum.  Even if they don’t, it’s quite rare that the interaction between neighboring 

atoms strongly encourages alignment. 

 

 

Types of Magnetic Dipoles 

Electrons in atoms/molecules produce magnetic dipole moments for what we can 

think of as two kinds of motions: 

(1) “Orbital” – We can think of the electrons semi-classically as orbiting around 

in ant atom. This “current loop” (in the opposite direction b/c the charge is 

negative) results in a magnetic dipole. 

(2) “Spin” – We can think of an electron as spinning around, which also means a 

current loop. However, electrons seem to be point particles, so this may be an 

intrinsic property. The size of the spin magnetic dipole moment of an electron 

is e 2me 9.285 10 24 A m2
. (The dipole moment for heavier particle is 

much less.) 

We’ll consider the things that can affect these two types of magnetic dipoles, then 

discuss the types of magnetism. 

 

Torques on Magnetic Dipoles 

We can find the torque on a magnetic dipole by considering a physical dipole which 

is a rectangular loop (sides a and b) carrying a current I.   We actually did this back in 

chapter 5. 

  

 (Fig 6.2) 

  

In the orientation shown above, the size of the forces on the sides of length b is 

 F IbB . 

in the + or – y direction. The torque, which tends to align m  with B , is 

 N 2 a 2 IbB sin x̂ , 



  4 

 N m B . 

Potential Energy and Force on Magnetic Dipoles 

Since the torque is the same form as for electric dipoles, the potential energy is 

 U m B , 

You can easily see that this is the potential for rotating the dipole 
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It’s a little tricky, but one can argue that this leads to  
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being the correct expression for the change in energy when you change the magnetic 

field or translate the dipole between regions with different fields.  The argument goes 

like this: rotate the dipole perpendicular to the field – thus this term is 0 no matter 

what the field strength is, then vary the field, then rotate the dipole back.  For each 

rotation, the above expression is correct, it just so happens that the field is different 

for each. 

and the force on a given dipole is 

 BmBmBmUF
mm


. (6.3) 

 

 (Jeffimeko makes the point that we’re looking for the force on a given current 

distribution, so m must be held constant.)  
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dl=(a/2)d  

dz=(a/2)sin d  
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Take for example m and B parallel to each other in the z-direction, but B varies with 

location, say get’s stronger in the x direction.  Then you’  

 

Magnetic Field of a Dipole 

This is needed if we want to calculate how dipoles affect each other. If a magnetic 

dipole points in the z direction, m mẑ , then the magnetic field that it produces is 

 Bdip

0m

4 r3
2cos  r̂ sin  ˆ . (5.86) 

 

Effect of a Magnetic Field on an Atomic Orbit 

Make a simplified (semiclassical) model how a magnetic field affects an electron’s 

orbit. Suppose an electron is circling a nucleus with the opposite charge at a radius R 

and speed v. The time that it takes for one orbit is T 2 R v . The size of the 

“current” is  

 I
e

T

ev

2 R
, 

so the orbital dipole moment (with the z axis as shown below) is 

 m
1

2
evR ẑ . 

 

 Fig 6.9, 6.10              

According to Newton’s second law, we have 
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R
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Suppose we subject the atom to a magnetic field in the z direction (as shown above). 

There is an additional force toward the center (charge is negative). 

  

If the radius stays the same, then the new speed v v v  is determined by 
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Combining the two previous equations gives 

 evB me
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If the change in speed, v v v , is small, then 

 evB
me

R
2v v . 
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This gives 

 v
eRB

2me

, 

which means a change in the dipole moment of 

 m
1

2
e v R ẑ

e2R2

4me

B , 

in the opposite direction from the magnetic field. 

 

Note: this argument doesn’t really hold water – B exerts a radial force on the charge 

loop, and thus can’t be responsible for a torque about the loop’s axis, thus can’t be 

responsible for changing L or thus changing m.  What can change m is the curled 

electric field that accompanies a change in B over time. 

This change in magnetic dipole moment of course changes the field that the dipole 

generates.  This is an example of Lenz’s Law: Introduce a magnetic field and induce a 

change in current that will itself be responsible for a counter field. 

 

Quantum Approach 

Recall that when we’d met the vector potential, I’d noted Newton’s 2n’d law could be 

rephrased as 
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So it’s as if we had a ‘system’ with momentum  Aqvmpsystem


1 . 

Or, rephrasing, Aqpvm system


1  

From here, one can build the Lagrangian and then the Hamiltonian of the system. 

The Hamiltonian of this system is 
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If the field is uniform in the z direction, then we can relate the potential to it through 
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 (applying Stoke’s Law to the relation between A and B) 
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Then by Product Rule 2, 
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The second term could be rephrased since 
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So, the second and third terms represent the energy for interacting with the field. 

Now, if we insist on modeling the electron as a magnetic dipole, then we have 

U m B  

Then we can read off what the magnetic dipole moment would have to be more-or-

less by taking the negative derivative with respect to B. 
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Note that the first term depends upon the existence of angular momentum while the 

second depends upon the existence of a field.  So the magnetic moment changes as the 

field changes.  That’s the diamagnetic effect. 

 

 

Types of Magnetism 

This is more complicated than polarization, because the magnetization is not always 

in the same direction as an applied magnetic field. 

(1) Paramagnetism 

 Results from the tendency of dipoles to line up with the applied magnetic 

field.  That’s easiest to do to unpaired spins (as opposed to orbital angular 

momentum). 

 It leads to a magnetization in the same direction as the applied field and 

attraction. 

 It occurs in materials with unpaired electrons (odd numbers) with spins 

that can align with an external filed. The alignment is not complete 

because of thermal motion. 
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(2) Diamagnetism 

 Results from the changes in the orbits of electrons. 

 It leads to a magnetization in the opposite direction from the applied field 

and repulsion. 

 Compared to aligning spins (and full on flipping them) it’s a small effect 

(just tweaking orbits), so it dominates in materials with no unpaired 

electrons (even numbers). 

(3) Ferromagnetism – will be discussed in more detail later 

 This is the effect responsible for common “permanent” magnets, but it is 

the most complicated to describe. 

 Results from the interactions of the spins of unpaired electrons. They tend 

to align with their neighbors in regions called domains. When a magnetic 

field is applied, two things happen: (a) the direction of the domains shift 

toward the direction of the field (but don’t perfectly align) and (b) 

domains in about the same direction grow. 

 Magnetization depends on the “history” of the material, not just the 

current applied magnetic field. More about this later… 

 Iron and nickel are examples of ferromagnetic materials. 

 

Magnetization (6.1.4) 

Suppose there are a lot of little dipoles pointing in the same direction. Define the 

magnetization (a vector): 

 M magnetic dipole moment per volume
d

md


, 

which can be induced by an external magnetic field or “frozen in.”  

 

Examples/Exercises: 

Exercise – Torque between Dipoles 

What is the torque on m2 ? 
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 m1  

 m2  

 r 

 y 
 x 

 z 

 

The magnetic field due to m1  at the location of m2  is (at 0 , r̂ ẑ ) 

 B1

0m

4 r3
2cos  r̂ sin  ˆ 0m1

2 r3
ẑ . 

The torque on m2  is 

 N2 m2 B1 m2 ẑ 0m1

2 r3
ŷ 0m1m2

2 r3
x̂ , 

which would cause m2  to rotate so that it points more vertically. 

Problem 6.5(a)(b) – Force on a Dipole in a Current-Carrying Slab 

A uniform current density J J0 ẑ  fills a slab straddling the yz plane, from x a  to 

x a . A magnetic dipole m m0 x̂  is situated at the origin (inside the slab). 

  

 B  

 B  

 

a. Find the force on the dipole, using Eq. 6.3. 

From Prob. 5.14 (HW 7), but with directions different, the magnetic field inside 

the slab is B 0J0x ŷ . For the dipole in the x direction, m B 0 , so 

F m B 0 . 

b. Do the same for a dipole point in the y direction, m m0 ŷ . 

For the dipole in the x direction, m B m0 0J0z , so  

 F m B
x

m0 0J0x x̂ m0 0J0 x̂ . 
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d. Suppose the dipole points in the x direction, m m0 x̂ , as in part (b), and is 

located at x 2a  and y z 0 . Find the torque on the dipole. 

The magnetic field outside of the slab for x a  is B 0J0a ŷ , so the torque on 

the dipole is 

 N m B m0 x̂ 0J0a ŷ m0 0J0a ẑ . 

This torque will rotate the dipole counterclockwise when viewed from the +z 

direction. 

 

Problem 6.3 – Force between two dipoles 

Two magnetic dipoles m1  and m2  are oriented as shown below and a distance z apart.  

 

  m1   m2  

 z 
 

 (b) Use Eq. 6.3, F m B , to find the size of the force on m2 . 

(c) Treating m2  as a physical dipole, make a sketch showing that it is attracted by m1 .  

a. Call the location of m1  the origin and its direction the z direction. The magnetic 

field of m1  at the location of m2  is 

 B1

0m1

2 z3
ẑ . 

The second dipole can be written as m2 m2ẑ , so  

 m2 B1

0m1m2

2 z3
 

and the force on m2  is  

 F2 m2 B1
z

0m1m2

2 z3
ẑ

3 0m1m2

2 z4
ẑ . 

b. If m2  is a physical dipole, the current I2  flows in the direction shown in the 

diagram below. Slightly off the z, the magnetic field due to m1  has a small  

component. The force dF2  on a small segment of the loop is mostly radial, but 

also has small component in the –z direction. This is true for every segment of the 

loop, so it is attracted to the other dipole. 
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 m1   m2  

 I2  

 B1  

 dF2  

 z 

 

 

Preview 

On Monday, we’ll talk about magnetized material, which contains many small magnetic 

dipoles. 

 

 

Summary 

Magnetization (6.1.4) 

Running parallel to our work with electric dipoles, suppose you have a chunk of 

material with a bunch of dipoles distributed all over it. 

 

 

 

 

Starting simple, let’s say that it’s full of magnetic dipoles, evenly distributed, same 

size, same orientation… 

 

 

 

 

 

If the vector potential due to just one of them is 
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Or, defining the density of magnetic dipoles as 
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And dubbing it the “Magnetization,” 
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Then again, think about what this mathematical entity “dipole” is here to quantify for 

us – charge circulation. So illustrating that, 

 

 

 

 

Obviously, where two neighboring dipoles meet, the current along those legs cancels.  

The only place that that cancelation doesn’t happen is along the edge, where there is 

no neighbor.  So there’s a macroscopic surface current. 

 

 

 

 

As you can see, if there’s a magnetic dipole pointing z, then there’s a current running 

in the  direction.  Sounds like a cross-product relation. 

So, this gives rise to a “bound” surface current density.  
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Now, what if the magnetization changes from one location to another, the adjacent 

legs of two neighboring loops don’t perfectly cancel.  Then you get a volume current 

density:  

 MJb


 

This one takes a little more work to get.  Figuring out the bound volume current inside a 

magnetized object is a little more subtle. Suppose that the magnetization of two adjacent 

chunks is different. Two examples are shown below: 

(1) The z component of M  increases in the y direction. The current around 

the chunk on the right is larger, so there is net current in the x direction 

between them. 

 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

 

(2) The y component of M  increases in the z direction. The current around 

the chunk on the right is larger, so there is net current in the –x direction 

between them. 

 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

 

The bound volume current Jb  depends on how the magnetization changes inside the 

material. You might be able to see that it depends on the curl of M . 

 

 

Field of a Magnetized Object & Bound Currents (Mathematically) 

Now, once we have translated from the language of dipole density (magnetization) to 

that of current density, we can use the old familiar relations 



  14 

 

 

A 0

4

Jb r

r
 d

volume

Kb r

r
da

surface

 

 

As with Polarization and bound charge densities, this relation can be derived from  
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By again observing that 
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Use a product rule to rewrite the integrand: 
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where the minus comes from switching the order of the cross product. This gives 
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so 
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We have to use the result from Prob. 1.60(b),  

 v  
volume

d v da
surface

, 

(the solution based on the divergence theorem is on the last page of the notes) 

to get (also using da n̂ da ) 

 

 

A 0
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r
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1

r
M n̂ da

surface

, (6.12) 

 

 

A 0

4

Jb r

r
 d

volume

Kb r

r
da

surface

, (6.15) 

where the bound currents are defined as 

 Jb M and Kb M n̂ . (6.13 & 6.14) 
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So, if you want to find the magnetic field from the magnetization M , there are two 

options: 

1. Use M  to find A  using Equations 6.13-15, then use B A . 

2. Find the bound currents Jb  and Kb  from M , then use Ampere’s law or the 

Biot-Savart law to find B . 

 

 

Examples/Exercises: 

Problem 6.7 

An infinitely long circular cylinder carries a uniform magnetization M  parallel to its 

axis. Find the magnetic field (due to M ) inside and outside the cylinder. 

If we label the axis of the cylinder as z, then M Mẑ . The bound currents (volume 

and surface) are 

 Jb M 0 and Kb M n̂ Mẑ ŝ M ˆ . 

This is like the current for a solenoid, but replace the current per length nI  (recall 

that n is turns per length) by Kb M . The magnetic field is 

 B 0Mẑ 0M s R,

0 s R.
 

(actually work through this using an Amperian Loop) 

 The traditional Amperian Loop analysis for a solenoid is that 

a) The field is translationally symmetric, thus 

whatever contributions there may be to the legs of the loop that go radially in and 

out cancel 

b) You’re just left with the axial legs, one 

inside and outside, now, note that their contributions sum to the same enclosed 

field regardless of how far in or out you make those legs, which means that the 

field has to be radially independent (constant) in these two regions (otherwise, 

moving the outer leg further out would change it’s contribution to the sum and yet 

the other contribution would remain constant and sum to a constant.  Outside, the 

only constant field that makes sense is 0 (since the field has to die off as you get 

far away.) 

c) So you’re just left with the question of 

whether or not the field parallel to the inner leg is everything – mightn’t there be a 

radial or angular component?  Imagine drawing a coaxial amperian loop inside – 

symmetry says that the angular component of the field must be constant all the 

way around the loop, yet there’s no piercing current – so that constant is 0.  As for 

a radial component, that would constitute a divergence, and B doesn’t diverge.   
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Problem 6.10 

An iron rod of length L and square cross section (side a) is given a uniform 

longitudinal magnetization M , then is bent around into a circle with a narrow gap 

(width w). Find the magnetic field at the center of the gap, assuming w a L . 

[Hint: treat it as the superposition of a complete torus plus a square loop with reversed 

magnetization or current.] 

 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

 

A bound surface current Kb M  will flow around the square cross section in the 

direction given by the RHR ( Kb M n̂ ). This is like a torus and a square loop with 

a current I Kbw Mw  flowing the opposite way. Inside a torus, the magnetic field 

is (Ex. 5.10) 

 B 0NI

2 s
ˆ , 

where s is the distance from the center of the “donut hole.” Since w L , the 

circumference of a circle of radius s is 2 s L . Replace the total current NI  (recall 

that N is the number of turns) by KbL ML . For a complete torus, the field would be 

 Btorus

0 ML

L
0M , 

in the same direction as M  (by the RHR). The magnetic field at the center of a 

square loop with side a and current I Mw is (Prob. 5.8 on HW 6): 

 Bsquare

2 0I

R

2 0 Mw

a 2

2 2 0Mw

a
, 

in the opposite direction. The size of the total magnetic field is  

 B Btorus Bsquare 0M 1
2 2w

a
,  

in the direction of M . Since w a , the magnetic field is B 0M . 

 

Example – Total Bound Current Through a Surface (based on Wangsness pp. 356-7) 

Show that the total bound current through any loop surrounding a magnetized object 

is zero. 

Suppose we want to find how much bound current flows from the right (shaded) to 

the left (unshaded) side of the magnetized object pictured below. Define two unit 
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normal vectors: n̂1  is perpendicular to the (imaginary) surface through which positive 

bound volume current flows and n̂2  is perpendicular to the outer surface of the 

object. Let d  be a differential element of length on the loop around the material in 

the direction by the RHR. Also, define the unit tangent vector t̂ , which is the 

direction in which positive surface current flows. Note that n̂2 , d , and t̂  are 

perpendicular to each other. 

 

 

 d  

 n̂1  

 d  

 n̂1  

 n̂2   n̂2  

 t̂  

 

The bound current from left to right has two parts: the bound volume current in the 

direction of n̂1  and the bound surface current in the direction of t̂ . Write it as 

 Ib Jb da Kb t̂ d , 

where da n̂1da . Substitute in Jb M  and Kb M n̂2  to get 

 Ib M da M n̂2 t̂  d . 

Use the curl (Stoke’s) theorem on the first term and the identity 

a b c a b c  from the front cover on the second term to get 

 Ib M d M n̂2 t̂ d . 

Finally, notice that n̂2 t̂  is in the opposite direction of d , so n̂2 t̂ d d . 

This gives the desired result of 

 Ib M d M d 0 . 

Preview 

Next time, we’ll talk about the auxiliary field H  which is related to the magnetic field B  

and the magnetization M . This will allow us to formulate an “Ampere’s law” for H  in 

terms of just bound currents. 
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Problem 1.60 (b) 

Show that v  
volume

d v da
surface

. [Hint: Replace v  by v c  in the divergence 

theorem, where c  is a constant vector.] 

 

The divergence theorem is 

 v  
volume

d v da
surface

. 

Replacing v  by v c  gives 

 v c  
volume

d v c da
surface

. 

On the left-hand side, the integrand can be written using a product rule as 

 v c v c v c , 

where the first curl is zero because c  is constant. 

On the right-hand side, the triple product in the integral can be written as 

 v c da da v c v da c , 

where the minus is from switching the order of the cross product. 

On both sides, we can take c  out of the integrals because it is constant. This gives 

 v  
volume

d c v da
surface

c . 

Since c  can be anything, the integrals must be equal. 

 

 

 

"I'm still confused about the derivation of 6.8, Can we go over that?" Jessica     

I was also a bit iffy on the steps from 6.6 to 6.8. Casey McGrath 

 

 

"If magnetic fields do no work, then why is it that you can pick up objects with ferro-magnets, and 
doesn't this break conservation of energy since ferro-magnets are permanent?"Freeman,  
 

 

"Can we talk about how the orbital speed of the electron can cause an atom to be repelled away 
with the field? Wouldn't increased v just increase the magnitude of the dipole moment and 
wouldn't it need to change direction to be repelled?" Ben Kid       
 

 

"can we talk about the math on page 271?" Connor W,  
 

 

"Now, we know that a charge undergoing acceleration will radiate energy. This lead to the 
important question of why an electron wouldn't just collapse to the center of the nucleus it orbited, 
but quantum mechanics fortunately solved that problem." Casey McGrath     

 

http://www.google.com/moderator/#11/e=213d0d&u=CAIQya2ftc3r_Jss
http://www.google.com/moderator/#11/e=213d0d&u=CAIQqN-8oLLxja5K
http://www.google.com/moderator/#11/e=213d0d&u=CAIQ_Kz8wpPkxYyWAQ
http://www.google.com/moderator/#11/e=213d0d&u=CAIQi_ar3N_7iMlW
http://www.google.com/moderator/#11/e=213d0d&u=CAIQu_Xj6PPJ09kb
http://www.google.com/moderator/#11/e=213d0d&u=CAIQqN-8oLLxja5K
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I'm curious, when Griffiths says that turning on a magnetic field will increase the 

orbital speed of the electron, would this manifest as a continuous acceleration (as B 

increased over time), or would it occur only in discrete velocity increments? Doesn't 

quantum mechanics solve the above problem precisely by only allowing certain 

discrete energy orbitals/states, so rather than speeding up the velocity gradually, 

wouldn't it happen in quantized jumps? Casey McGrath 

 
"Griffiths says that diamagnetism is typically much weaker than paramagnetism. Why is this the 
case?" Spencer     

Paramagnetism is a little easier to understand because of the similarity to 

polarization in electrostatics, but I'm still unclear about diamagnetism. Spencer 

 

 

"Do you think we could draw a few more useful parallels about how M the magnetization and P 
(polarization) are similar? Either mathematically, conceptually or both ." Rae        
 

 

"Why isn't paramagnetism "frozen in"?"Casey P,  
 

 

"Can we do an example problem like Ex6.1 except with a non uniform magnetization?" 
Jessica   

 

http://www.google.com/moderator/#11/e=213d0d&u=CAIQqN-8oLLxja5K
http://www.google.com/moderator/#11/e=213d0d&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#11/e=213d0d&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#11/e=213d0d&u=CAIQ5Mixy8fKrpNP
http://www.google.com/moderator/#11/e=213d0d&u=CAIQytbjmuXUx99L
http://www.google.com/moderator/#11/e=213d0d&u=CAIQya2ftc3r_Jss

