Mon (C 14) 4.2 Field of Polarized Object

\Wed (C14) 4.3 Electric Displacement

Thurs HW 5
Fri. (C14) 4.4.1 Linear Dielectrics (read rest at your discretion)




Useful relations From the Past

V, (F) = 1 r-p Potential due to Dipole (term)
P Ars, T°
0

£ P Ao : :
E, (r.0)= yp— (zcosgr+ sin® 9) Field due to Dipole (term)
0

Atom on a stick

P~ aEext Dipole Moment and Polarizability Tensor
N = p x E Torque on Dipole
AU (F): —A(ﬁ E) Energy of rotating or changing dipole
F = (D’ : ?)E Force on dipole

Today’s Starting Point

Polarization = volume density of dipole moments

5] @ akin to charge density
T o= d_q
dr




Polarization & “Bound Charge”
Conceptual

Uniform density of dipoles (Uniform Polarization)
- +

- +

- +

- +

Produces surface-charge density

j;a(F’)da’
n

Varying density of dipoles (Varying Polarization)

Vsurf (F) ==

4,

++ +4+ ++ ++

Produces volume-charge density too

NS b for “bound” charge densities —
. . rp()dr - ,
Vi (F) = 72 f . charges bound to their atoms, can’t
translate through material

_ _ . o, (rda’ rdz’
V() =V (F) + Vi (F) = 2 f I 1 o)



Observer
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Polarized object
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Polarization & “Bound Charge”

mathematical
o .
. 1 f-p(0) Being explicit that this equation was
Vdip(r) - > . . . .
Are, T derived in expansion about origin;

works best if dipole at origin

Generalized to dipole off origin
_ 1 z-p(F’
Vdip(r): p( )

2

A,

Sum over all dipoles in object

Vdips(r) = Z L ;z\ ﬁ(rl)

2
dipoles 477:50 G

In limit of differentially-small dipoles

1 I z-dp(f’) 1 I z-P(F')dz’

Vdips (F) -

2

d_> -

since P_p o dp=Pdr
dr




omerver  POlarization & “Bound Charge”
mathematical

r = 1 ’? (7! '
r Z Vdips(r):4 J‘ [—ZJ-P(I’ )dT
7t&y volume G
Recall conceptual-based expectation that
Polarized object uniform polarization looks like surface charge
FI

and spatially-varying looks like volume charge

Rephrase expression to force that appearance

7 - l — 1 . — — =
7 ==V, | —|=V,|— since £ = —T
7 7

>0 Vdips (l_;) =

(
1
Are, VOI

Vdips(F) = 1 I ﬁr’[ ls(r”)Jd z" 4 I (_ﬁr' ) IS(F,))dTr :l

lume

Ars,

Ars,

Vs (F) = . | @-dé# | (ﬁr"f(r’))dr’}

surface volume



Polarization & “Bound Charge”
mathematical

Vs () = 1 | [izj-ﬁ(l?’)dr’

472'80 volume

Observer

—

)

Recall conceptual-based expectation that
Polarized object uniform polarization looks like surface charge
. and spatially-varying looks like volume charge

Rephrase expression to force that appearance

j@-daw | (ﬁr"f(r’))dr’}

_ 1
Vdips(r) = {

B A7Eg | surtace volume
Form of
VdipS(F):41 { I ﬁda# I 'Obdr'}
7 | surface * volume %
where

o,=P-4 and p,=-V-P



Polarization & “Bound Charge”

c,=P-4& and p,=-V-P
7

Are,

surface volume

Vi (F) = — [j Zoda’+ [ Lodr

} where

When you polarize a neutral dielectric, charges move a bit, but the total remains zero.

Q, = jpbdz"+ :fabda

volume surface

Exercise: use math like we did to derive the V; . expression to now show that the total
bound charge is 0.




\

Cut obliquely

L/

Polarization & “Bound Charge”

Bound charges are real charges

Conceptual (mathematical) Example: Cylinder of aligned dipoles

L Total dipole moment: Protar = (P °VO|) = CIL
Surf h larizati Iati Charge resides on ends
urface charge — polarization relation: _
PAcrossL _ ql—
PACFOSS = q

or P=—q =0,

(the half must be net neutral —so
PA,. =0 equal g’s on level and oblique faces)

PA, ., C0sf =q
Pcosé = a4
nd
|5 -a = g o As our more mathematical derivation concluded

Cross _
Aend



Polarization & “Bound Charge”

O

Example
. P where
I . V(D) = I b ga’ + J Lo gz o,=P-a and p,=-V-
aTOP =1 472-‘90 surface G volume ’z
| +——» _Adielectric cub_g of side /, centered at the origin, carries a “frozen-in”
i Aight = Y polarization, P = k¥ where k is a constant. Find all of the bound
8o = X charges and check that they add up to zero.
In Cartesian (since we’re talking about a cube)
é\'back =—X 3 - A A A
A A P=kr=k(xx+yy+zz)
a‘bottom =—Z
do =Y Volume charge density:
o D éPx éPY éPz
p,=—V-P =- + +
X & A
e, o), 2]
x g  a |73

Surface charge density:

2
G = KX %+ 9+(1/2)2] 2 =KI/2
des

Given the symmetry, ditto for all six si

o, =kl/2

o,=P-a4 Forexample,o,,, =P

z



Polarization & “Bound Charge”

Example
. P where
I NN (o = [ Zbda+ [ Fodr o,=P-4 and p,=-V-P
aTOP =1 472-‘90 surface G volume "
| SN A dielectric cube of side /, centered at the origin, carries a “frozen-in”
i Aright = y polarization, P kr where k is a constant. Find all of the bound
8 ot = X charges and check that they add up to zero.
A ) Volume charge density: p,=—-V-P — _3k
aback =—X )
4 .3 Surface charge density: o, =kl/2
bottom
do =Y Total bound charge
prd '+ §dea
volume surface

Densities are conveniently constant

Q, =pVol+o, A
Q, = (- ) +6[(k/2)12|=0



Polarization & “Bound Charge”

Exercise
where

—

Vdips(r):47ig j 9b ga’ + _[ Po g, Gb:IS-é and pb:_v.f)
01 su

7

rface volume

A dielectric cylinder of radius R and length L is centered on the z axis. One
end of the cylinder is at z= 0. It carries a “frozen-in” polarization,

P=—k[l+2/L]2 where kis a constant. Find all of the bound charges and
check that they add up to zero.




Polarization & “Bound Charge”
Exercise

—

c,=P-4& and p,=-V-P

A thick spherical shell (inner radius a and outer radius b) is made of dielectric

. H o" H ”n 1 H = k A
material with a “frozen-in” polarization P(r): >
r

Locate all of the bound charge and use Gauss’s law to calculate the electric field in
the three regions.

Cross-sectional view




Mon (C 14) 4.2 Field of Polarized Object

\Wed (C14) 4.3 Electric Displacement

Thurs HW 5
Fri. (C14) 4.4.1 Linear Dielectrics (read rest at your discretion)




