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Materials 

  

Announcements 

 A word of explanation regarding Wednesday’s broad reading:  Often the Magnetic and 

electric interactions are introduced quite separately from each other and it’s only in later chapters 

(which many folk never get to) that you begin to see how they’re really aspects of a single 

electromagnetic interaction, aspects that we’ve broken apart more out of historic ignorance and 

mathematical convenience than a fundamental conceptual distinction.  So the Chapter 12 reading 

helps us to tie electric and magnetic together and so make a smooth transition and build the 

proper associations in mental framework. 

 

Last Times 

We met the notion and tools of a multi-pole expansion and began using finding the first few 

terms for discrete charge distributions.  The multi-pole expansion is much like a Taylor series or 

Binomial series expansion – a way of making ‘good enough’ approximations.  In this case, we’re 

essentially expanding in terms of the ratio of origin-to-observer-location/origin-charge-source-

location.  So, if we put our origin near / in the charge source and the source is small compared to 

the distance from it to the observer, then the first few terms in the expansion series are quite 

likely good-enough. 

  

This Time 

 Using Multi-Pole Expansion some more; especially for continuous charge distributions. 

  

Summary 

 

Multipole Expansion 

Again, 
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 Where  Pn is the n
th

 Legendre polynomial. 
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 … 

So 

Mon. 10/7 

Wed. 10/9 

Thurs 10/10 

Fri., 10/11 

3.4.3-.4.4 Multipole Expansion  

(C 17) 12.1.1-.1.2, 12.3.1 E to B;  5.1.1-.1.2 Lorentz Force Law: fields and forces  

 

(C 17) 5.1.3 Lorentz Force Law: currents 
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Or for a continuous distribution, we’re looking at the integral 
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Warning – relative to the origin.   

If you’re quite far from the sources, you say, it’s like a point charge way out there; if you get a 

little closer, you can see that there’s some slight polarization – a little more charge on this end 

than the other – so it’s like a point charge + a dipole; you get a little closer and you an resolve 

‘it’s like a point charge + a dipole + a quadrupole,…  Just like the first few terms of a Taylor 

Series Expansion are graphically simple building blocks, the first few terms of a Multipole Series 

Expansion are like (differential forms of) reasonably simple charge distributions:  The monopole, 

the Dipole, the Quadrupole, the Octopole. 

Monopole:  far enough from a (non-neutral) charge distribution, the voltage looks like that of a 

point charge 

 



V 
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Q

r
, 

where the total charge is 

 



Q  qi

i

   r  d  . 

We saw many examples of the electric field going to the limit of what it would be for all of 

the charge treated like a point charge. 

 

What if Q = 0? A simple example is the physical dipole – equal and opposite charges (q) 

separated by a distance d. In that case, 
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r2
. 

  

Different arrangements of charges have potentials that fall off more quickly as the distance 

gets large. 
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The first two terms are: 
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where the dipole moment is defined using the property 



r  ˆ r  r cos  : 
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  
i

iirqp
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. 

Warning:  These position vectors are relative to an origin.  Just like a “moment of inertia” 

exactly what you get depends on the point your measuring against (in that case, the axis of 

rotation.)  For the series to converge the fastest, you want the origin to be in the center of 

charge, so all r’s are as small as they can be. 

 

Examples/Exercises: 

Problem 3.32(c) (EXERCISE/EXAMPLE): Find the first two terms in the mulitpole expansion 

for the figure shown below. 

   

 

 

The total charge is 



Q 2q, so  
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1
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r
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The dipole moment is 
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p  qi
r i

i

  q  0  3q  aˆ y   3qa ˆ y . 

The challenge is to find 



ˆ y  ˆ r , which is the projection of 



ˆ r  (see the diagram on the right) in 

the 



ˆ y  direction. The projection in the xy plane gives 



sin  and the projection onto the y axis 

gives 



sin , so 



ˆ y  ˆ r  sinsin . The dipole term for the potential is 

 



Vdip r  
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r2
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1

40

3qa

r2
sin sin . 

 

 

 

 

Example: Suppose a thin rod of length 2L lies on the z axis and is centered on z = 0. If the 

charge per length of the rod is 



 z  0 z L 
3
, what are the first two terms in the mulitpole 

expansion? 

Divided the rod into small segments of length dz like the one shown below. 
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The charge of a segment of the rod between z and (z + dz) is   dzLzdz
3

0 2   . The total 

charge of the rod is 
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We could also get this result by noticing that the charge distribution is antisymmetric about z 

= 0. The monopole term is 



Vmon  0 . 

The dipole moment must be in the z direction, so 
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

i










̂  z . 

The dipole moment of one segment is 

     zdzLzzdqdpz

3

0 2 . 

Integrate over the length of the rod to find the total dipole moment: 
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Of course, with an approximate expression for the potential in hand, we can find the 

corresponding approximate expression for the field. 

(see ppt.) 

Electric Field of a Dipole 

If the dipole moment points in the z direction (



p  pˆ z ), then the potential is 

 



Vdip r, 
1

40

p  ˆ r 

r2


pcos

40r
2

. 

If there are no other nonzero multipole moments, the electric field is r 
p 


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Exercise. Problem 3.38: Suppose the charge density on the surface of a sphere of radius R is 



   kcos  in spherical coordinates ( is the angle from the z axis). What is the approximate 

electric potential far away? 

There are opposite charges on the top and bottom halves, so Q = 0. 

By symmetry, the dipole moment must be in the z direction, so 

 



p  pz
ˆ z  qizi



i


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





̂  z . 

(subtly, identifying this is key, because, z-hat is a Cartesian coordinate, so it’s a constant as 

we go about integrating over all the point charges.) 

The charge on a thin ring between the angles  and 



  d  is at the same value of 



z . 

 

 

 



  

 



d  

 



z  Rcos  

 



Rsin  

 



R d  

 

The area of the ring shown above is 



2r  R d  2R2 sin d , so its dipole moment is 

 



dpz  qizi
  2R2 sin d  kcos  Rcos . 

Add (integrate) up the contributions from rings at all angles () to get 

 



pz  2kR3 cos2 sin d
0



 . 

Make the change of variables 



u  cos , so 



dusin d  and 
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3
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The total charge of the sphere is zero, so far away the approximate potential is 



Phys 332 Electricity & Magnetism Day 13 

6  

 

 



Vdip r  
1
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3r2
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kR3

30

cos

r2
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This is the same as the exact answer (Eq. 3.87) for r > R, so all of the higher multipoles are 

zero. 

 

Origin of the Coordinates for Multipole Expansion 

Suppose the origin of the coordinate system is shifted by a vector 



a  (as shown below). 

  

The monopole moment does not change, since the total charge Q is unchanged.  

The dipole moment in the new coordinate system is 

 



p  r  r   d   r  a   r   d 

 r  r   d   a  r   d   p Qa 
 

If Q = 0, then 



p  p . However, if 



Q 0, then the dipole moment does depend on the choice 

of the origin. 

 

  

 

 

 

 

 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
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Exercise: A solid sphere of radius R has a charge density of 



  0 2
R

r









sin 2 . 

a. Note: in spherical coordinates runs only from 0 to ; the other half of space is covered 

by running  from 0 to 2. Make a sketch of the charge distribution. What is the sign of 

the charge in different regions? 
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b. Find the first two terms in the mulitpole expansion of the electric potential. 

Because the distribution about the xy axis is antisymmetric, Q = 0 and 



Vmon  0 . 

The distribution is symmetric about the z axis, so the dipole moment only has a z 

component: 

 



p  pz
ˆ z  qizi



i










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The sphere must be divided into segments that have the same z component. We also want 

to be able to calculate the charge of each segment easily. Since the charge density 

depends on r and , use thin rings between the radii r and r + dr and between the angles  

and  + d. The volume of such a ring is 

 



2 rsin   r d dr  2r2 sin d dr 
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
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

z  r cos  

 



rsin  

 



r d  
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The z component of the ring’s position is 



z  rcos , so the z component of its dipole 

moment is 
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Integrate over r from 0 to R and  from 0 to  to get the dipole moment for the whole 

sphere. The two integrals can be done separately. 
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Using the relation 



sin 2  2sincos , 
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These give (in the positive z direction): 
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 and 

 



Vdip r  
1

40

p  ˆ r 
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
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12r2
ˆ z  ˆ r 

0R4
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Preview 

For Wednesday, you’ll read about magnetic forces. We’ll talk about the production of magnetic 

forces after that. 
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"Can we do an example problem finding the electric field of a dipole in different 
coordinates and configurations?" 
Jessica   Hide responses   Post a response 
Admin 

Maybe an easy one in polar coordinates to start out with? 

Casey P, AHoN swag 4 liphe 

And then maybe a more challenging one. 

Spencer 

and then a REALLY challenging one. 

Rachael Hach 
 

   
 

 

   
 

 

Flag as 
inappropriate 

 

"It seems that the idea of a dipole moment is rather important. How are we going to use 
this and apply it in the future? And are quadrupoles/higher order -pole moments just not 
quite as common as mono- and dipole moments?" 
Casey McGrath      Post a response 
Admin 

   
 

 

   
 

 

Flag as 
inappropriate 

 
"Those field contours on figure 3.37a for a pure dipole are weirding me out a little bit. Do 
you think we could go into a bit more conceptual detail about what exactly is going on 
when you confine the dipole to the origin?" 
Rachael Hach      Post a response 
Admin 

   
 

 

   
 

 

Flag as 
inappropriate 

 
"I would also like to see various examples in different coordinate systems, etc." 
Sam      Post a response 
Admin 

   
 

 

   
 

 

Flag as 
inappropriate 

 
"Can we do a problem using multipole expansion but finding the potential over a volume rather than point 
charges?" 
Jessica      Post a response 
Admin 
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Drop off in potential, field:  Can we get a better explanation of the potentials fall offs, and how it relates 
to the pure and physical dipoles? 

  
  
How many terms to keep? Yeah...how are we supposed to know how many pole terms we should use 
in the approximation if monopole and dipole (altered) are not enough? 

  
another discrete charge distribution example:  Can we do problem 3.32 for practice? 

Move the origin, change the dipole:  can we go over how the origin shift changes the dipole moment 
and do some examples involving that? 

coordinate-free representation of dipole field: Please do problem 3.36. 

Electric field of dipole in other coordinates: Is it possible to show how the electric field of a dipole 
would look like in Cartesian or cylindrical coordinates? 

  
Breaking up one into several?  (summing over distribution): This is something that I wondered as 
well. A single large dipole is one thing, but splitting a distribution up into several is where I lose my 
understanding. 

  
Continuous charge distribution:  Could we see an example of a multipole expansion with a continuous 
charge distribution? 
  
 Aye. My question at the end of the section as well. Would you just find the "center of mass", or more the 
actual center of charge? 
  
  

 


