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Wed. 9/11 

Thurs 9/12 

Fri. 9/13 

(C 21.1-.5,.8) 2.2.3 Using Gauss  T2 Numerical Quadrature (continued), 1.3 Integral Calc (recommended) 

 

(C21.1-.5,.8)  2.2.3-.2.4 Using Gauss 

 

HW1 

Mon. 9/16 

Wed. 9/18 

Thurs 9/19 

(C 16) 1.6, 2.3.1 -.3.3 Electric Potential    

(C 16) 2.3.4-.3.5 Electric Potential   

 

 

 

HW2 

 

 

Last time we “met” Gauss’s Law, and saw its two forms: integral and differential. 

 

 Integral: the flux or “flow” of electric field through a closed surface depends on the sources 

enclosed (like water from a showerhead & through a mesh baggy). 
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 Differential: the Divergance is something like the rate at which the enclosed volume empties or 

fills 
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Integral Form 

The following is always true, but not always useful! 

 E da 
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To be useful for finding the electric field, a charge distribution must be symmetric. There are 

three kinds of symmetry that are helpful: 

(1) Spherical: r , not a function of  or    E E r ˆ r  

(2) Cylindrical: s , not a function of z or    E E s ˆ s  

(3) Planar: z , not a function of x or y (for symmetry about xy plane)  E E z ˆ z  

(+ for z > 0, – for z < 0) 

In these cases, it is possible to choose a Gaussian surface so that the electric field is either 

perpendicular or parallel to each part of the surface. The surface should be chosen so that 

where the field is perpendicular, it is has a constant magnitude.  

When Gauss’s Law is useful, the integral on the left-hand side of the equation should be 

easy!  

 



Phys 332 Intermediate Electricity & Magnetism Day 4 

2  

 

Tips for Using Gauss’s Law 

(1) Use a symmetry argument to determine the direction of the electric field. 

(2) Figure out what shape of Gaussian surface can you draw so that each part is either 

perpendicular or parallel to the electric field. (Draw it!) 

(3) Apply Gauss’s Law to the chosen surface to determine the magnitude of the electric field. 

(Some dimensions won’t appear in the answer.) 

 

Examples 

Example 1: Spherical shell with radius R and uniformly distributed charge Q 

By symmetry, the electric field must point radially and its magnitude can only depend on the 

distance from the center of the shell. A sphere of radius r is a good Gaussian surface since it 

will be perpendicular to the electric field everywhere. The electric flux is: 

E ˆ n  A E 4 r
2  

r R: no charge inside qinside 0 , so 0E  

r R: all charge is inside qinside Q , so  

E ˆ n  A E 4 r2
qinside

0

Q

0

 

E
Q

4 0r 2
 

We’ve been using these results for quite a while now (the second part was just stated)! 

Note: Gauss’s law only helps get the magnitude of the electric field, not the direction. 

When we’re using Gauss’s Law, it’s generally because the integral on the Left is easy, but if the 

charge enclosed is phrased not simply as Q, but as a charge density, then you may have a 

corresponding integral on the right to do. 

Example 2:  Sphere of radius R with varying charge density 
3

3

R

r
r o .   

What is the field at a point a distance r 1< R?   

What is the field at a point a distance r 2> R?   
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(limit of r is the radius of the Gaussian pill box for a location 

inside the sphere, and it’s R for a location outside.) 

Gaussian pill 

ball of radius r 

R r 
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Example 3: Large uniformly charged plate with charge per area of Q/A 

By symmetry, the electric field near the center of the plate must point perpendicularly away 

from the plate. Its magnitude could depend on the distance from the plate. 

A box that extends on each side of the plate is a good Gaussian surface since the electric field 

will be parallel or perpendicular to each side.  

 boxA

 

If the sides perpendicular to the plate each have an area boxA , the electric flux is: 

E ˆ n  A 2EAbox  

The amount of charge inside the Gaussian surface is qinside

Q

A
Abox , so  

E ˆ n  A 2EAbox

qinside

0

1

0

Q

A
Abox  

E
Q A

2 0

 

 

Example 4.  Capacitor.  After this one, they asked for capacitor – I started trying to do 

one large Gaussian Box that pierced both plates, but then I realized that while Qencl was 0, that 

could simply be because the field in the bottom was equal to that out the top (not requiring that 

they were 0.)  Ultimately, just reasoned by saying, now that we’ve got the field for one, we can 

add it to the field for another. 
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Exercises 

A. Uniformly-Charged Rod 

A thin rod of length L has a positive charge Q distributed uniformly along its length. 

 Field Geometry. Use a symmetry argument to determine the direction of the electric field 

near the center of the rod. 

 Choosing the Gaussian bubble.  What shape of Gaussian surface can you draw so that 

each part is either perpendicular or parallel to the electric field? 

 Doing the Math. Use Gauss’s law to find the magnitude of the electric field at a radial 

distance r from the rod near its center. 

 

 



Phys 332 Intermediate Electricity & Magnetism Day 4 

5  

 

B. Solid Uniformly-Charged Sphere 

A solid sphere of radius R has a positive charge Q distributed uniformly throughout its volume. 

 Field Geometry. Use a symmetry argument to determine the direction of the electric field. 

 Choosing a Gaussian Bubble. What shape of Gaussian surface can you draw so that each 

part is either perpendicular or parallel to the electric field? 

 Doing the Math. Use Gauss’s law to find the magnitude of the electric field at a distance r 

from the center  of the sphere for: 

r R 

r R 

 

 



Phys 332 Intermediate Electricity & Magnetism Day 4 

6  

 

More with the Numerical Quatrature. 

 

 

 

 

Problem 2.11 – Uniformly charged spherical shell 

Problem (like part of 2.16) – Solid cylinder with uniform charge density 

Problem 2.17 – Sheet of thickness 2d with uniform charge density 

 

 

Curl of E 

Well, Del can ‘multiply’ a vector in two ways.  Guass’s Law comes from dotting Del into E.  

What about crossing it into E? 

Do for Point Charge and then Superposition-Principle up to many charges.   

Griffiths references Stoke’s theorem and then is all done.  Go ahead and read section 1.3, in 

particular 1.3.5 on Stoke’s theorem.  It should make conceptual sense but it may feel a little 

unproven.  What I want to do today is very straightforward math.  It won’t be particularly 

conceptually enlightening, but the math is clear and simple. Together, this and Griffiths 

argument should make it pretty clear that there is no curl for E of a stationary point charge. 

Stationary Point Charge.  It is relatively straightforward to calculate the curl of the 

electric field due to a single point charge. If a charge q is located at r x ˆ x y ˆ y z ˆ z , then 

the electric field at r xˆ x yˆ y zˆ z  is 

 

  

E 1 r 
q

4 0

r 
r 3

q

4 0

x x ˆ x y y ˆ y z z ˆ z 

x x 
2

y y 
2

z z 
2

3 2
  

 

so 
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q
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q
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Look at just the x component of the determinant, which is 
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0.  

The other components (y and z) are also zero, so E 1 0 .  

Supper Position Principle. 

Any static charge distribution can be built up of stationary point charges.  If the curl is 0 

for the field due to one, it’s zero for the field due to all.  

E E 1 E 2 , so  

 E E 1 E 2 E 1 E 2 0.  

If an electric field doesn’t satisfy this condition, it couldn’t be produced by static charges! 

 

The Fundamental Theorem of Curls (Stoke’s Theorem) says 

 v da 
S

v d
P

,  

where S is a surface and P is a closed path that bounds S. This holds for any surface and 

E 0, which imply that  

 E d 0,  

for any closed loop. The differential and integral forms of this statement are true for any 

static arrangement of charges, but not for situations where the magnetic field is changing 

(Faraday’s Law). This property is important for the definition of the electric potential. 

Preview 

For next time, you’ll read about electric potential (V). The definition is based on E d 0 for 

electrostatic fields. Also review how to perform line integrals (1.3.3). 

 


