Fri. 10.2 Continuous Distributions
Mon. 10.3 Point Charges
Wed. (C 14) 4.1 Polarization HW9




Maxwell’s Laws

Relating Fields and Sources
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Helmholtz Theorem: if you know a vector field’s curl and divergence (and time derivative), you
know everything

Ajjeanisinie|ay Ajliessaosau JoN



Corresponding Relations between Potentials

(on the road to general solutions for E and B)

Combine

Maxwell’s Relations with Potentials’ to Relate Potentials
Between Fields & Relations to Fields & Sources

Sources “VW=E VxA=B No effect on electrostatics. In

_ / electro dynamics, work
Redefine _vyvV _A _ E  associated with V and dA/dt.
Faraday’s Law A
VxE=-P 0=Vx W =2 VxA
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Corresponding Relations between Potentials

(on the road to general solutions for E and B)
We want to solve for V and A given
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Corresponding Relations between Potentials

(on the road to general solutions for E and B)
We want to solve for V and A given
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Continuous Source Distribution

, Solve
(vz_ﬁ_ __r AT

As with solving any differential equation, “inspired guess” is a valid solution method
a) We already know for static charge or current distributions
__p . -
VZVL——g— and VPA=—1,]
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Are solved by
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b) Without sources, we have the classic wave equation, so variations in V and A propagate

0»‘)2
2 1 _ S
Apparently Maxwell’s Laws require \ T a2 L =0 Note: \/ (r t) 'k‘”C” would
time separation, but don’t dictate , have worked too.
0
precede or follow. VZVL —1 v,

To be continued... o
= k- r—ct
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So a variation in V observed by an observer at time t was generated at a distance r away at previous time

t =t _x t, Et+% would have worked too.
Combining what we know about these two special

nstant or free spa , We can guess




Continuous Source Distribution

Solve
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where *

Plugin to test

Del asks how detected voltage changes as we change ) ( ) (
observation locations not source locations.



Continuous Source Distribution

, Solve
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Continuous Source Distribution

Solve
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Continuous Source Distribution

ATt = j I, )dz' where t =t—=
1

c
Example: find the Vector potential for a wire carrying a linearly growing current

Defined piecewise
through time

TR L[S P TR
Tt = o I L - J 5
1) = 0 for t<O AT.L Ar % dl'=— 4;; B dz’z
|kt for t>0 _ -
As time goes on, observer becomes aware of more
I1(t,) :{0 fofr trt<00 and more of wire starting to carry current. At any
or &> _ time, some morsels are just too far away to
Rephrase as piecewise

contribute. Limits should reflect that.
through space
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Continuous Source Distribution

ATt =- —j ( )dz- where tr—t—g
%

Example: find the Vector potential for a wire carrying a linearly growing current.
Defined piecewise
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Continuous Source Distribution

AN o= j F,,t , _ "
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Example: What are B and E?

VxA=B
1+y1- 57 — || -
it —ag — 2=kt In[ \/7“2]—2\/1—;2 ¢ for s<ct
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0 for s> ct
A bit of math later:

Sk @14 for s<ct
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Continuous Source Distribution
AT t
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Example: What are B and E?
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All but one factor of t is bound up in (s/ct), so
same thing, times —(s/t), in z direction, and a
term for the one lone t
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Continuous Source Distribution

—

A(F,t]: 4;;_‘- ( tr)df where tr—t—g

Exercise: find the Vector potential for a wire that momentarily had a burst of current.

Defined piecewise o |(F't)
through time ATt = j dl
I(t)=q.5t—t w ¥
% b So, at some time, t,, the current will blink on and off again. The

observer will first notice the middle blink, then just either side of
the middle, then a little further out,...
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So, we get contribution to our integral only when

tbztrzt—%

v=Ct-t

Which is true at two locations at any moment t:

|| 2
=+ ct—t, *-
We could rephrase the delta function as being a
spike at these two locations, or we could observe
the integral is ‘even’ and then wave our hands
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Continuous Source Distribution

ATt = ”"j I t)dr where tr—t—g
1

HW Exercise: A neutral current loop made of two concentric arcs. The current rises with time
as I(t) # kt (presumably just since t=0, but we’ll assume we’re long enough out.) What are A,
and E at the origin?

A (7.t =te j'(r't)dm

A "’




Continuous Source Distribution

ATt = ”"j I t)dr where tr—t—g
1

Exercise: A neutral current loop made of two concentric arcs. The current rises with time as
I(t) = kt (presumably just since t=0, but we’ll assume we’re long enough out.) What are A, and
E at the origin?

A (F.t) = j'(r't)dm

A "’




Continuous Source Distribution

~ t
ATt = 4ﬂj (’t )dr where tr—t—g

Charged sphere spinning up from rest



http://web.mit.edu/viz/spin/
http://web.mit.edu/viz/spin/visualizations/movies/sphereCreate.avi

