
Physics 332: E&M 2013  Ohm’s Law & Emf 

 

Equipment 

 Crank generator 

 Magnet and swinging fins with and without fingers cut in  

Announcements: 

o Test in 1 week. 

Summary 

Transition. 

Stationary Charges & Fields.  In the first section of the book we considered constant 

electric fields produced by stationary charges; we tackled that head on by starting with 

Coulomb’s Law (directly relating sources and their fields) and then developing a handful 

of related tools.   

Steady charge flow & Fields.  In the next section (which Test 2 will be over) is focused 

on constant magnetic fields, produced by steady currents (charges with steady motion).  

Again, we approached this task head-on with the Biot-Savart Law which relates the 

source currents and their fields.  We subsequently developed a handful of associated 

tools. 

Unsteady currents and charge motion & Fields.  You wouldn’t know it from section 

7.1, but where we’re going in this next section is to talk about the fields generated by 

non-steady currents and even accelerating charges.  You were just presented with 

Coulomb’s Law and the Biot-Savart Law right off the bat – no experimental motivation, 

just ‘here’s the way it is folks.’  In that spirit I’ll remind you that the general expression 

for the interaction between two charges (executing arbitrary motion) is  
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Broken out into terms that do and do not depend upon the sensing charge’s velocity, we have 
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I could just plop that in your lap and say ‘that’s the way it is, now let’s deal.’  But, for 

better and for worse, that’s not typically how it’s taught.  “For better” because those are 

pretty ugly expressions and some of the related tools are far simpler to use than those are, 

also it would be nice to see how those are logically connected to the special case ones 

that we’ve been using so far.  “For worse” because when we follow the traditional 

pedagogical path it’ll be easy to loose sight of one very important fact that’s blatantly 

clear with these expressions – charges (and only charges) produce fields.   Good 

physicists, perhaps the majority of physicists, get confused on that point because they 

followed the pedagogical path that you and I are about to follow without keeping these 

final equations in sight. 

 

That warning issues, we’re now going to obliquely, somewhat experimentally/historically 

approach the topic of fields generated by non-steady currents, time-varying currents.  

Section 7.1 may seem like quite the detour, and it partly is, but along the way, we’re 

picking up one useful tool for our oblique – the relationship between magnetic flux and 

electro-motive force.  Historically, this relationship played an important role in people 

figuring out how to deal with time-varying currents. 

 

First stop:  Ohm’s Law 

How does an electric field relate to a current inside a typical wire? 

Absence of Field.  First, let’s think about what the charge carriers are doing inside the 

wire without the electric field.  You might first guess ‘just sitting there’, but actually 

they’re pretty free, so they’re zipping all around, just like the air molecules in this room 

are doing.  And, like the air molecules, they run into things a lot and bounce this way and 

that way and get nowhere in the end.  So, at any given instant, a typical electron is going 

something like 

kTvthermal
 

But they collide frequently.  At low enough temperatures, they mostly collide with 

impurities in the metal; at higher temperatures, they also collide with “phonons” – the 

jiggling of the atoms that make up the wire.  Let’s say, at some temperature, there’s an 

average distance that they get before collision: collisionl   (and that distance will be shorter 

at higher temperatures since there are more phonons.)  Then the time between collisions 

is something like  

thermal

collisions
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l
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With Field.  Now say we turn on an electric field.  This has a similar effect to that of 

turning on a fan for air molecules – it superimposes on the random motion a slight drift.  

For an individual charge carrier, this drift is much smaller than the thermal velocity; 
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, so, for example, the time between collisions is still about the 
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However, looking at the whole population, the random thermal motions all cancel 

out, and the only net motion is this common drift. 

 

 

 (average displacement to the left due to the 

field) 

Now, let’s get more specific about this drift.  Between collisions the electric 

field’s the only thing acting upon a charge carrier, so  
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Of course, with a constant force, the average velocity is just  
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 Where the initial velocity is just its random thermal motion.  Averaged over all 

the charge carriers, this comes to 0. 
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 Now, it’s a bit of a cartoon, but it gives us the right flavor if we imagine that the 

charge carrier looses all it’s drift each time it collides, and that happens every 
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If that’s the velocity with which they drift in response to the field, then we can easily say 

what the current density is: 
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where  is the conductivity (not the charge per area!) and the conductivity is 1 .  

 

 Ohm’s Law – the current density is proportional to the field 

This is often written in terms of Current and Voltage as 

R

V
I  

 Warning: not all materials are “ohmic”, for example, an object may have some 

capacity to store charge (rather than just passing them along) so it is capacitive. 

 

Problem:  7.4 Two long, coaxial metal cylinders separated by a material with 

conductivity s(s) = k/s.  What is the resistance, R? 

Note: in the ppt, I derive                                                and use then use this relationship 

to find R for this problem. 

The starting point is ldEV
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If we choose a cylindrical surface, symmetry tells us that E is constant over it,  

daEI cond  

Now, 
s

k
cond  so LksL

s

k
da

s

k
22  

Then 

||

1
dl

dadV

dI
R

cond



  5 

Lk

I
ELkEI

2
2 which, rather surprisingly, is independent of s. 

Now,  

I
Lk

ab
ab

Lk

I
dl

Lk

I
ldEV

b

a

b

a
222


 

Apparently, 
Lk

ab
R

2
 

 

Pr. 7.3 

 

Generally, the place to start with these problems is  
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But Gauss’s Law tells us that this last integral is  
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Power Disipation – We’ve previously seen that the work done in moving a charge across 

a potential difference is  

qVW q  

The rate at which this work is done is then 

   IVV
dt

dq

dt

dW
P

q
 

So that’s the rate at which the electric field is investing energy in the charges as they 

move through the potential difference.  Meanwhile though, they are not accelerating 

because they keep running into the impurities and phonons and slowing back down.  

Through these collisions the energy must be getting dissipated at the same rate as it’s 
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getting invested.  We can more explicitly phrase this in terms of the collisions, or at least 

the associated resistance through Ohm’s Law 
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EMF 

We define “electro motive force” as the path integral of force per charge: 

 f d f s d  

Why do this? Because, within a conductor, over the region that the force is applied a 

charge separation will be established.  That charge separation, of course, will generate 

an electric field, E, which will itself exert a force on the charges in that region, qE.  In 

equilibrium,  
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Now, while this force may be confined to a small region, the electric field is not, and 

the voltage difference between the two ends of that region is the same whether you 

cross inside the region or outside it (that’s what it means to be path independent).  Of 

course, V = IR in a resistive element. 

 

In a battery.  To make this all concrete, imagine a battery wired up to an external 

resistor. The way a battery works is chemical processes drive positive and negative 

ions opposite directions through a solution (though, for our purposes, it might as well 

be fairies running a conveyor belt on which they load charged particles.) This 

produces a charge separation which, in turn, generates an electric field that opposes 

further charge separation.  Eventually, the charge separation gets large enough that 

the force that’s driving the charges is perfectly opposed by the electric field.  Now, 

that leads to the chain of math/logic shown above.  In the end, there’s a voltage 

established between the two battery terminals, and that’s equal to the emf of the 

generating a charge separation.  Now, if that’s the voltage difference between the two 

terminal on the inside, then, well, that’s the voltage difference between the two 

terminals on the outside.  That is, from the perspective of the resistor wired to the two 

terminals, that’s the voltage drop across it.  So that’s what drives a current through it.  

 

One more point, Griffiths notes that, since this driving force is likely confined to a 

specific region (in this example, inside the battery), we’re free to extend the integral 



  7 

to be a closed loop – since the integrand is 0 everywhere outside the region (battery), 

the integral out there contributes nothing. 

 
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Motional emf 

 

This idea holds regardless of what force is driving the charge separation.  One popular 

force is magnetic.  Suppose a metal bar of length L is moved through a magnetic field 

with a magnitude B into the page at a speed v. 

 

There is a magnetic force on each electron in the wire: 

F mag e v B  

Fmag evB downward 

There is also a force on each proton, but they are not free to move. Electrons will move 

from the top of the bar to its bottom, polarizing the bar. This will produce a downward 

electric field and upward force F e eE  on each electron in the bar. Equilibrium will be 

reached when the magnetic and electric forces are the same size: 

evB eE  

In terms of Voltage and Emf: 
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The potential difference between the ends of the bar is: 

vBLELV  

The bar acts like a battery because a charge separation is maintained by a non-Coulomb 

force (in this case the magnetic force). Suppose the bar is pulled along two frictionless 

metal rails which are connected by a resistor (as shown below). 



  8 

 

 

Then the emf separates charge and that charge separation drives current through the 

resistor. 

    vBLemfVIR  

 

As the bar moves at a constant speed and a steady current flow, the resistor dissipates 

energy to its surroundings. Where does this energy come from? Work must be done on 

the bar to keep it moving. 

 

If there is a current I flowing upward through the bar, the magnetic force on it is ILB to 

the left on it. Someone or something must apply the same size force to the right on the 

bar to keep it moving at a constant speed. Of course, once we’ve got a current flowing up 

the wire, there’s a force exerted on it back to the left to the tune of 

    xILBBlIdFmag
ˆ


 

This is the force that would have to be opposed in order to maintain a constant speed. 

 

Example: Pr. 7.7.  This problem asks us to consider the situation above and, first, to 

express this magnetic force in terms of the resistance rather than the current 
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Next, if this force went unopposed, assuming some initial velocity, vo, what would be the 

velocity as a function of time? 
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Next, it asks to show that, eventually, all the bar’s kinetic energy gets dissipated through 

the resistor. 
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as t goes to infinity, this goes to  
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 so it loses all its initial kinetic energy. 

  

Example 7.4 – Faraday’s Disk 

A metal disk of radius a rotates with an angular frequency  (counterclockwise 

viewed from above) about an axis parallel to a uniform magnetic field. A circuit is 

made by a sliding contact. What is the current through the resistor R? 

  

Note: This problem cannot be solved using d dt . 
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Find the emf by calculating the line integral of the force per charge from the center to 

the contact point. The speed of a point at a distance s from the center is v s, so the 

force per charge is f mag v B sB ˆ s . The emf is 

 f mag d fmagds
0

a

B s ds
0

a
Ba2

2
. 

The current found using Ohm’s law is 

 I
R

Ba2

2R
. 

By the RHR, it flows from the center to the outer edge of the disk. 

 

Phrasing in terms of Magnetic Flux 

Let’s return to the original result for the emf.  It can be rephrased a bit.  Here, we are 

changing the area of a loop through which the field is flowing. 

dt

d

dt

BAd

dt

dA
BBvLemf B  

If we impose the Right Hand Rule for sign conventions, we’d have  

dt

d
emf B  

 

Problem 7.11 

A square loop is cut out of a thick sheet of aluminum. It is placed so that the top 

portion is in a uniform, horizontal magnetic field of 1 T into the page (as shown 

below) and allowed to fall under gravity. The shading indicates the field region. What 

is the terminal velocity of the loop? How long does it take to reach 90% of the 

terminal velocity? 

  

Use x for the distance from the bottom of the field region. The magnetic flux is 
B x , so the size of the emf is 

 
d

dt
B v . 

By Ohm’s law, the size of the current is I R B v R. By the RHR, the current 

flows in the direction of v B  (for the top segment), which is to the right.  

The magnetic field is perpendicular to the current in the loop so the force is 

 F I d B I B
B2 2v

R
, 
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where  is the length of a side. By the RHR, the direction of d B  and the force on 

the loop is to the upward. This is a 1-D problem. Using downward as positive, 

Newton’s second law is 

 mg
B2 2

R
v ma m

dv

dt
. 

Terminal “velocity” is reached when the acceleration is zero, so 

 mg
B2 2

R
v 0 vt

mgR

B2 2
. 

The equation of motion can be written as  

 g
B2 2

mR
v 1

v

vt

g
dv

dt
. 

This can be integrated to get (starts from rest): 

 
dv

v t v

g

v t

dt , 

 
dv

vt v
0

v t
g

vt

dt
0

t

, 

 ln vt v
0

v

ln
vt v

vt

gt

vt

, 

 
v t v

vt

e gt vt v v t 1 e gt vt . 

At 90% of terminal velocity, 

 
v

vt

0.9 1 e gt vt e gt vt 0.1, 

 gt vt ln 1 10 t
vt

g
ln 10 . 

Suppose the cross sectional area is A. The mass is m 4 A , where 

2.7 103kg/m3 is the mass density of aluminum. The resistance of the loop is 

R 4 A 4 A , where 2.8 10 8 m is the resistivity of aluminum. The 

terminal velocity is 

 vt

mgR

B2 2

4 A g 4 A

B2 2

16g

B2
, 

so the time to reach 90% of terminal velocity is 

t
vt

g
ln 10

16

B2
ln 10

16 2.7 103kg/m3 2.8 10 8 m

1 T
2

2.8 10 3s 2.8 ms. 

The units work because ohm = V/A and T = N/(Am). 



  12 

Proof of Generality 

 

Say you have a fairly elastic and mobile wire loop in the presence of a non-uniform 

magnetic field (steady in time, but varying from one location to another.)  Say you flex 

and move this wire.  Here’s a picture representing the old wire configuration and the new 

one. 

 

 

 

 

 

 

 

 

The green region represents the change in area.  That can be described in terms of each 

little point on the loop having its own velocity such that it gets to the new location in time 

dt. 

Note that the area swept out by moving our little line segment dl from the inner curve 

position to the outer curve position is lddtvad


 

 

So, the little bit of flux gained by moving dl out is 

ldBdtvlddtvBlddtvBadB


  

Making use of Vector Identity (1): CBACBA


 and the fact that flipping the 

order of a cross-product flips signs. 

Then the total gain in flux from expanding the loop is gotten by summing over the whole 

loop. 

 ldBdtvd B


 

Finally, divide by the dt 

 

mag
B

magmag
B

Emf
dt

d

EmfldfldBv
dt

d 

 

 

 

 

 

vdt 

S(t) 
S(t+dt) 

dl 

da 
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Example 7.10 Motors: 

The commutator switches the direction of the current as the loop spins so that it is always 

moving in the same direction on each side of the axis. 

 

 

Generators: Suppose a loop rotates at an angular speed . 

As the loop spins, there is a motional emf on each side with length w, but in opposite 

directions. That leads to a conventional current around the loop. 

 

The emf is largest when the angle  is 90 , because the wires are moving the fastest in the 

direction perpendicular to the magnetic field. The size of the emf on the left wire depends 

on the component of the velocity perpendicular to the magnetic field: 

sinsin
cos

emf left BA
dt

d
BA

dt

BAd

dt

ABd

dt

d


. 
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"The book talks about how emf is the integral of a force per unit charge. What does this quantity 
even mean conceptually?" 
Casey P,    - other (non-electrical) work done on a charged object per charge 
 

The way Griffiths is describing it, seems like the Emf is the pushing power outside of 

the source (the battery), that keeps the charges moving when they are away from 

the battery itself. Is this right, and if so, does this answer your question? 

Freeman,  
 

 

"Can we go over griffith's derivation of Vave for eqn 7.6?" 
Jessica        
 

 

"In equation 7.10 and above, Griffiths shows that f (the source) and the electric field E are 
essentially one in the same, and I am not necessarily following this. I think some sort of vector 
diagram might help." 
Rachael Hach        in equilibrium rather, they must balance 
 

 

"Also I didn't follow the proof of eqn 7.13, can we go over this?" 
Jessica    we will, but on Friday 

I'd also like to see the derivation of 7.13. Where does the negative sign come from 

and what does it mean? 

Spencer 

Yes, and I don't quite understand what Griffith's is trying to illustrate in Figure 7.13? 

Casey McGrath   
 

 

"For figure 7.8 In what circumstances would you have current flowing in greater than it is out I 
thought It was just the movement of the electrons already in the wire."   
Antwain       only for that split second while the current is getting turned on; soon there-after, a 
steady current is established (unless we continually vary the source – AC)  
 

 

"Section 7.1.3 gave me a little trouble connecting the math to the physical 
system (in this case a generator). Could we talk about how a generator is able to 
create a constantly changing flux in a loop?" 
Ben Kid       - next time 
 

 

"Can we briefly talk about that "flux rule paradox" Griffith's illustrates in Figure 7.14?" 
Casey McGrath       - in the derivation, the rate of change in area, da/dt corresponded to the rate 
of charged particles moving, vL.  The Flux rule only relates such changes in area to emf. 
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