Fri. 6.2 Field of a Magnetized Object

Mon. 6.3, 6.4 Auxiliary Field & Linear Media
Tues. HW9
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Magnetic Field Effects on Atomic Dipoles
Proto-Quantum Derivation
Consider a charged particle moving in the presence of a magnetic field.

The ‘momentum’ in the particle + field system: Pgystem = Piin T Pigis = MVy + gA
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Paramagnetic Diamagnetic
Orbits orient to minimize energy-

: What kind of atom is predominately
Opposes field
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diamagnetic?
not really how you build a Hamiltonian, but happens to work in this case



Magnetization

vi = am

d
M= density of magnetic dipole moments

Consider patch of material covered in magnetic dipoles dr
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If there’s an M, what does that say about currents?

Each magnetic dipole is a current loop, so

with constant M, opposite currents where two loops meet cancel Ieavmg
only edge current

Consider a block of some thickness h
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Magnetization
Vi = dm
dz’

Consider patch of material covered in differentially-small magnetic dipoles

If not equal magnetizations / currents, inner current crossings only partially cancel,

giving current across body o _
The current down one stripe is the difference between

- that around two adjacent loops: 1(y+Ay)-1(y)
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jb —VxM So, if the magnetization, which here point’s z, varies across y, there’s a net

current in x Looks a lot like one term in a cross product.
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It may be familiar (without the b-subscripts) that
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(Derivation almost identical to that for polarization’s scalar potential)
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Example: An infinitely long circular cylinder carries a uniform magnetization parallel to its
axis. Find the magnetic field inside and outside the cylinder.
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Before the math, think about the arrangement of microscopic
current loops that would give this M.

J,=VxM=0 and [ZbZMXﬁZ(W)XS'\:M&

Like a solenoid (can you say “bar magnet”)

Amperian loop and argument for (comparatively)
uniform and 0 outside
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Exercise: An infinitely long circular cylinder carries a uniform, circumferential magnetization.
Find the magnetic field inside and outside the cylinder.

Before the math, think about the arrangement of microscopic
current loops that would give this M.

|\/|¢ Warning: the math of J is a little subtle.
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Ex. 6.1: What’s the magnetic potential of a sphere with

constant magnetization in the z direction?
K, =Mixf=M sin 0'¢
Griffiths points out that this has the same form as

example 5.11: uniform surface charge density, o,
rotating with angular speed o.

K = oV = o{wRsin 0'9)= (caR)sin 6'4
So you can jump to the conclusion and substitute
M in place of cawR
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Exercise: An iron rod of length L and square cross section (side a) is given a uniform
longitudinal magnetization M, then is bent around into a circle. Find the magnetic field
everywhere.
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Example: An iron rod of length L and square cross section (side a) is given a uniform
longitudinal magnetization M, then is bent around into a circle. with a narrow gap (width w).

Find the magnetic field at the center of the gap, assuming w<<a<<L.
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Example: Like bound charge, total bound current must be O’tfor any shaped object.
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