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Announcement:  SPS Comet Observing trip with CSUSB 

 

Handouts: Intro to Making Plots with Python 

 

Plotting 

 Over the last few days we‟ve come up with some interesting equations.  Often you want 

to be able to plot them.  VPython can do it, but it‟s sometimes a little clunky.  The 

Enthought version of Python is better.  The handout walks you through using the 

Enthought version to do this.   

o Note: at the beginning of the semester I‟d asked you to install VPython and 

Enthought‟s python on your computer (the latter is free, but you have to get 

through to a screen where you can indicate “educational use”.)  So you‟ve got two 

versions of Phython‟s Idle on your machine.  To use Enthought‟s plotting 

package, you‟ve got to make sure you open the right one: go to “EPD” folder on 

your start menu and open Idle from there.  In that say „open new window‟, and 

then type your code in that new window. 

Remind them of: 

Example 2: A 2-kg particle moves in one dimension under a force: 

F x bx 2c sin ax , 

where a = 1 m
-1

, b = 1 N/m, and c = 1 N. The argument of the sine is in radians. (a) Find the 

potential energy with the reference point at the origin so that U 0 0. Sketch the potential 

and show the classically allowed and forbidden regions if the total energy is E = -0.5 J. (b) 

Identify the three points of equilibrium and determine if each is stable or unstable. 

(a) The potential is found by integrating the force (with a minus sign!): 
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The constants a, b, and c are all one and each term is in Joules when x is in meters. The graph 

below shows U x  vs. x. For large x, the x
2
 dominates the oscillating term. The dashed line 

is E = -0.5 J and the allowed (A) and forbidden (F) regions are labeled. The particle is only 

allowed to be where E U x  because E T U x  and T must be positive. 

Then use this as an example to plot: 
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(b) The points of equilibrium are where F x dU dx 0 . This gives the transcendental 

equation: 

x
2c

b
sin ax  

The solution x 0  corresponds to an unstable equilibrium because d2U dx2 0. The other 

two solutions can be found approximately by making successive guesses to get x 1.896 , 

which are stable because d2U dx2 0. 

 

General 1-D & Time dependence 

If energy is conserved, sUTE , then: 

sUEsmT 2

2
1  , 

which can be used to find the velocity as a function of position: 

sUE
m

ss
2

 . 

The velocity is dtdxx , so xdxdt  . This can be integrated to find the time for motion 

between two points: 

x
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In practice, this can be difficult to calculate because the integrand goes to infinity as it 

approaches the turning point where 0x . Even for the simple pendulum, there is no analytical 

solution (see Prob. 4.38). Energy conservation is typically not a good way to get information 

about time. 
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Example 3: (2.10 of Fowles & Cassiday 5
th

 ed.) A particle of mass m is released from rest at 

bs  and its potential energy is sksU . (a) Find its velocity as a function of position. 

(b) How long does it take the particle to reach the origin? 

(a) At bs , the kinetic energy is T 0 so the total energy is E U b k b . Since energy 

is conserved: 

xkssmsUTbkE 2

2
1  , 

so taking the negative root because the potential attracts the particle toward the origin: 

bsm

k
ss

112
 . 

 

Say k = 3N/m, m = 2kg, b = 3m. 

 

Exercise:  Try your hand at getting Enthought‟s Python to plot this. 

An example of this is shown below. 
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(b) Since dtdss , the time required to move from b to 0 is: 

b
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Use the integral (from the front cover of the text): 

y  dy

1 y
sin 1 y y 1 y  

with the change of variables bys  and dybds  . The integral for the time becomes: 
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Rigid Bodies: (Systems of multi particles) The book discusses multi-particle systems. One 

common situation is if they define a rigid object.  Then the total kinetic energy can be rephrased 

as the kinetic energy of the center of mass + the kinetic energy of all the parts about the center of 

mass: 

2
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For a rigid body rotating about an axis in a fixed direction (we generalize this in Ch. 10): 

T TCM Trot
1
2

MV 2 1
2
I 2, 

and U Uext because the internal energy U int  does not change when the relative positions of the 

particles does not change. 

 

Example 1: (related to Ex. 4.9) If they start from rest, which will make it to the end of a ramp 

faster, a cylinder (disk) or a thin ring? Do the masses or radii matter? 

 h

 v

 

 

Define the PE to be zero at the bottom of the ramp, so initially Uo Mgh and finally U f 0. 

The initial KE is To 0 and the final KE is Tf TCM Trot
1
2

Mv 2 1
2
I 2

. For an object that 

is rolling without slipping, v R , where R is the radius. The moment of inertia for a 

cylinder is Icyl
1
2

MR2
 and for a thin ring it is Iring MR2

. The final KE in the two cases are 

Tf ,cyl
3
4

Mv 2
 and Tf ,ring Mv 2

. Conservation of energy, To Uo Tf U f , gives: 

cylinder : Mgh 3
4

Mv2 vc 4gh 3

ring : Mgh Mv2 vr gh
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The cylinder will be going faster at any point along the ramp, so it will reach the bottom first. 

This result does not depend on the mass or radius, just how the moment of inertia depends on 

the shape. For any round object, it will be I shape factor MR2 . 

Question: How would a solid sphere compare to the other two shapes? 

Answer: It would beat both because a larger fraction of its mass is near the axis of rotation. 

(Its moment of inertia is I 2
5

MR2, but you don‟t need to know that.) 

 

Last time, we‟d looked at this problem: 

 

Example 1: Suppose the masses m1 4 kg and m2 6 kg are initially at rest. Ignore friction 

and assume that the mass of the pulley is small. What will the speed of m2 be when it hits the 

ground? 

  = 35

 1 2

 2 m

 

This system is described by one parameter, s, the distance that the masses have moved. They 

are tied together, so they move the same amount (until 2 hits the floor). 

  = 35

 1

 2

 h1

 s

 s

 

The total mechanical energy of the system is: 

gsmgsmsmmUTUTE 21

2

212
1

2211 sin  

The initial condition of the system is s 0 0  and Ý s 0 0 , so Eo 0 . Conservation of 

mechanical energy gives: 

gsmgsmsmm 21

2

212
1 sin0  . 

Solving for the speed and putting in the final condition s 2 m gives: 
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Now, what if we say the pulley has mass? 

Example 2: Suppose the masses m1 4 kg and m2 6 kg are initially at rest. Ignore friction, 

but assume the pulley is a cylinder of mass mp 1 kg and radius R 0.2 m. Also, the rope 

does not slip over the pulley. What will the speed of m2 be when it hits the ground? 

  = 35

 1 2

 2 m

 

This system is described by one parameter, s, the distance that the masses have moved. They 

are tied together, so they move the same amount (until 2 hits the floor). 

  = 35

 1

 2

 h1

 s

 s

 

 

The angular speed of the pulley is related to the speed of the rope ( Ý s ) by Rs . The 

moment of inertia of the cylinder is I 1
2

mpR2
. The total mechanical energy of the system is: 

gsmgsmIsmmTUUTTE p 21

2

2
12

212
1

2121 sin  

gsmgsmRsRmsmmE p 21

22

2
1

2
12
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gsmgsmsmmmE p 21

2

2
1

212
1 sin  

The initial condition of the system is s 0 0  and 00s , so Eo 0 . Conservation of 

mechanical energy gives: 

gsmgsmsmmm p 21

2

2
1

212
1 sin0  . 

Solving for the speed and putting in the final condition s 2 m gives: 
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which is slight smaller than what we found yesterday for a massless pulley. The pulley‟s PE 

does not change, so it does not have a large effect. 

 

More Problems 

 

Example 2: (Prob. 4.36) The ball (mass m) has a hole through it and slides on a frictionless 

vertical rod. A light string of length l passes over a small frictionless pulley and attaches to 

another mass M. The positions of the objects can be specified by the angle . (a) Write an 

expression for the potential energy U . (b) Find whether or not the system has an 

equilibrium position and for what values of m and M. Are any equilibrium positions stable? 

 M

 m

 H  h

 b

 

 

(a) The length of the string from the pulley to the ball is b sin . The heights are h b tan  

and H l b sin . Since these distance are measured below a reference point, the PE is: 

U mgh MgH mg b tan Mg l b sin  

U gb
M

sin

m

tan
Mgl

gb

sin
M mcos Mgl . 

The last term is a constant that could be “defined away.” 

(b) The derivative of U is: 

dU

d

gb

sin2
sin msin M mcos cos . 

Use the relation sin2 cos2 1 to get: 

dU

d

gb

sin2
m M cos . 

The condition for equilibrium, dU d 0, yields the condition 
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m M cos 0 

cos
m

M
. 

This only has solutions if m M . When m M , the answer is 0, which is not possible 

for a finite length of string. Therefore, if m M  there is an equilibrium point at: 

o cos 1 m

M
. 

The requirement that m M  makes sense because in equilibrium the tension of the string 

must be equal to Mg, but upward force on m is only a fraction of the tension. Therefore, m 

must be smaller if they are to both be in equilibrium. 

Take the second derivative of U to check the stability: 

d2U

d 2

gb

sin4
sin2 M sin m M cos 2sin cos  

At the equilibrium point, the term in square brackets is zero, so: 

d2U

d 2

o

gbM

sin o

 

Since we know 0 90 , sin o  is positive. Therefore, d2U d 2

o

0 and the 

equilibrium is stable. 

 

Example 3: (Prob. 4.37) A massless (or very light) wheel of radius R is mounts on a 

horizontal axis. A mass M is attached to the rim of the wheel and a mass m is hung by a 

string wrapped around the rim. (a) Write an expression for the total PE as a function of the 

angle . Choose U 0  when 0. (b) Find any positions of equilibrium and discuss their 

stability. (c) Suppose the system start at rest at 0. For what values of the ratio m M  will 

the system oscillate? 

 R

 M

 m

 

 H

 h
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(a) As the wheel turns through an angle , mass M rises by H R 1 cos  (this works for 

any angle!) and mass m descends by h R  (the arclength unwound). The total PE is: 

U MgH mgh MgR 1 cos mgR . 

(b) The condition for stability is: 

0 dU d MgRsin mgR 

sin m M . 

This only has solutions if m M . If m M , there is one solution at 2. If m M , there 

are two solutions, one with 2 (M below the axis) and one with 2 (M above the 

axis). The stability is determined from the second derivative: 

d2U d 2 MgRcos . 

This is positive (negative) and the equilibrium is stable (unstable) for 2 ( 2). For 

equal masses, the equilibrium at 2 is a saddle point because d2U d 2 0 

(c) For the given initial conditions, the total energy of the system is E 0. Plot the potential 

U . The system will oscillate if there are turning points on both sides of the equilibrium. If 

m M 0.725, this condition is met. 
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Use the Excel spreadsheet “Prob4.37.xls” to show this. 

 

 


