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Announcements 

• Exam 2: Review material is available on the website.  Come to class Wednesday with 
questions, prompted by that material, by homework,…  Those questions will be the basis 
of the day’s discussion.  

From Last Time 

• Forces on a current carrying loop.  

 

 

 

 

 

 

 

 

 

 

Potential Energy for Magnetic Dipoles: 

We can phrase the same interaction in the language of work and energy.  When the loop rotates a 
small angle dθ , the sides of length w move a distance ( ) θdw 2  in the direction of the 
perpendicular part of the magnetic force. Suppose the loop starts at an angle θi  and rotates to an 
angle θ f . The magnetic potential energy is the negative of the work done by the magnetic force. 
There are forces on both sides of the loop, so: 
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Pause and note that the integrand is the Torque  
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Define Um =0  at   θ = 90 o , then: 
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Energy Maximum and Minimum.  

Forces are nice and visualizable – pushes, pulls; torques are a little worse.  Energies…not so 
easy.  So it’s worth our pausing and relating this expression to our intuition about forces and 
torques and maybe transfer some of that intuition to our energy expression.  

Mapping out the potential for the range of possible orientations: 
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Notice that, while there is no torque on the loop either at its energetic minimum or maximum, 
just off those points there is some.  At theta=0, a minimum, if the loop were twisted a little 
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clockwise, the torque would be counterclockwise (getting it back into alignment), similarly, if it 
were twisted a little counter clockwise, the torque would be clockwise.  We would thus say that 
this is a “stable” minimum – slight perturbations out of equilibrium lead to torques that push it 
back into equilibrium. 

On the other hand, looking at theta = 90°, a maximum, if the loop were twisted a little 
counterclockwise, the torque would also be counterclockwise, similarly if it were twisted a little 
clockwise, the torque would also be clockwise.  This is an “unstable” maximum – slight 
perturbations out of equilibrium lead to torques that push it further out of equilibrium.  

 

Consider the torques for a moment.  Fully aligned or anti-aligned, there’s no net torque on the 
loop  

   

Subtle point of magnetic work and energy 

Last time I made the point that, since a magnetic force is always perpendicular to the change in 
motion that it causes for a free particle, it can’t do work and it’s meaningless to talk about a 
potential energy for that.  Yet here, we do have work and potential energy is meaningful.  What 
gives?  The obvious difference is that the charged particles that are being interacted with aren’t 
free.  They’re bound (electrically) to the wire.  So, the net force, the magnetic force, plus the 
restraining force that holds the current-carrying charges to the wire, dictates the direction of the 
motion, and that has a component in the direction of the magnetic force. 

 

Force on a Magnetic Dipole. 

Probably your very first experience with magnets was that they pulled and pushed each other.  
Yet, we have so far said nothing about the force between two magnets.  Now we’re ready to.  
Recall that even a bar magnet is, microscopically, a current loop.  So, we’ll consider how the 
field of one bar magnet interacts with the current loop of another.  The magnetic field of the bar 
magnet diverges slightly, so the forces on opposite sides of the loop do not quite cancel.  

 
It is difficult to calculate the distance dependence of the force based on the figure above, but we 
do see that there would not be a net force in a uniform magnetic field. 

We will use the potential energy to approximate the force. Suppose a magnetic dipole moment 
moves a distance ∆x  along the axis of a bar magnet as shown below. The magnetic field of the 
bar magnet decreases with distance ( B1 > B2). 
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The change in potential energy as the dipole move is: 

∆Um = −Wm =−Fm ∆x , 

so the force on the dipole is: 

Fm, x = −
∆Um

∆x
= −

dUm

dx
= µ

dB
dx

 

I’ve used Um =−µB because   
r 
µ  and   

r 
B  are in the same direction. If the bar magnet has a magnetic 

dipole moment µ1, its field along the x axis is: 

B x( )≈ µ0
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The force on the dipole is: 
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where µ2  is the magnetic dipole moment. 

 

Example: Suppose M =15 g  and µ1 = µ2 ≈1 A ⋅m2  (Problem 17.1) 

The magnetic force will equal the gravitational force when: 
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because N=C(m/s)T.  

 

 

Motors: 

The commutator switches the direction of the current as the loop spins so that it is always 
moving in the same direction on each side of the axis. 
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Generators : Suppose a loop rotates at an angular speed ω. 

As the loop spins, there is a motional emf on each side with length w, but in opposite directions. 
That leads to a conventional current around the loop. 

 
The emf is largest when the angle θ is 90°, because the wires are moving the fastest in the 
direction perpendicular to the magnetic field. The size of the emf on the left wire depends on the 
component of the velocity perpendicular to the magnetic field: 

emf left = B v sin θ( )w . 

The speed is v = ω h 2( ), where ω is the angular speed. Also, if the angle starts at zero, the angle 
is θ = ωt , so: 

emf left = B hω 2( )wsin ωt( ). 
Since the left and right sides have the same emf, the total is: 

emf total = ωB hw( )sin ωt( ). 

If the connections to the loop are made as shown, the current will alternate directions. 
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It requires energy to turn the generator because the magnetic force on the loop opposes the 
motion. A careful calculation shows that the mechanical power input into the generator is the 
same as the rate energy is transferred to thermal form. 

 
 


