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Equipment: 

Parallel and anti-parallel wires 

Hand crank generator 

Magnet – wire swing 

Cow magnet down a pipe. 

 

Experiments:  

Exp 20.23 – Switching the direction of the current or the magnetic field (flipping magnet) will 
reverse the force on the wire. 

Exp 20.24 – (a) The magnet attracts the coil if their magnetic fields are in the same general 
direction, which occurs when the coil is perpendicular to the magnet. (b) The coil twists when it 
isn’t perpendicular to the magnet. 

Exp 20.25 – There is a larger current and deflection with two batteries in series, but no change 
when there are two in parallel. 

 

Force on a Current-Carrying Wire: 

The magnetic force on a single charge is: 

  
r 
F mag = q

r 
v ×

r 
B  

In a segment of wire of length   ∆l  and cross-sectional area A, there are   nA∆l( ) charges moving 
with an average drift speed of v . If the vector   ∆

r  
l  is in the direction of the conventional current, 

then the force on the segment of wire is: 

  
nA∆l( )qr  

v ×
r  
B = q nAv ( )∆

r  
l ×

r  
B  

The conventional current is I = q nAv , so: 

  ∆
r 
F mag = I ∆

r 
l ×

r 
B  

Example 1: loop of wire partially in a magnetic field 
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r 
B 

   
r 
F 2

   
r 
F 1   

r 
F 3

 
The force on each side points outward from the loop, so the net force IBL is downward. 

Example 2: two parallel wires 

(1) currents in same direction 

   
r 
B 1

   
r 
F 21 = I 2∆

r 
l 2 ×

r 
B 1

I1  I2

 
(2) currents in opposite directions  

   
r 
B 1

   
r 
F 21 = I2∆

r 
l 2 ×

r 
B 1

I1  I2

 
The magnetic force acts on individual moving charges, so why does it cause a wire to move? The 
electrons are bound to the wire, so they drag the wire with them when they are pushed downward 
by the magnetic force. 
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The book notes that, in this case, the magnetic force of wire 1 on wire 2 is equal and opposite to 
that of wire 2 on wire 1; however, it parenthetically comments that this needn’t always be the 
case!  First look at that statement mathematically.   
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Now, the denominator, thanks to the squaring, is the same in both cases, as is the factor out front, 
but the unit vector is flipped, and so are the roles of v1 and v2 in the cross-products.  Flipping the 
unit vector in the second relation (to get back to the one in the first relation) introduces a 
negative sign. 
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.  Now, if v1 and v2 are parallel, then it’s intuitive that the 

order of the cross-products doesn’t matter, but what if they aren’t parallel?  

 Well, generally, )()()( ABCCABCBA ××+××=××  

More specifically,  
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Or,  
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This last term goes away only if the two velocities are parallel or anti-parallel. 

 

One might hope that, if we included the electric interaction (which is the proper thing to do), 
using the corrected form of Coulomb’s law (corrected for the fact that the sources are moving), 
we’d then find and equal and opposite excess of force that will cancel off.  The book claims that 
this is not the case.  I’ve worked out the case with constant velocities (say, steady-state in a 
wire), and one aspect of the result is that there is also an ‘extra’ electric force, but it points along 
r21 (which isn’t intuitive since the particles are moving), while the extra magnetic force must be 
perpendicular to r21 (obvious in the math since the force results from crossing something into r21 
and must therefore be perpendicular to r21.  So the extra magnetic and electric forces are 
perpendicular to each other – there’s no way they could cancel.   I’ve looked at the equations 
when the particles are free to accelerate, not enough to discount the possibility of cancelation, 
but enough to see that it isn’t obviously there.  At any rate, if we believe the authors, the moral is 
that if we treat this interaction as simply a two-party thing, then Newton’s 3rd Law is violated, 
and, by extension, conservation of momentum is violated.  That’s very, very bad.  The solution is 
that we don’t treat it as a two-party interaction.  Recall that we’ve previously found that 
conservation of energy fails unless we consider the change in the field’s energy.  Similarly, we 
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need to consider the change in the magnetic (and electric) field’s momentum.  This adds extra 
weight to our notion of a field / its necessity in our structure of physics.  You may feel more 
comfortable with this weight if we phrase it in terms of photons.  You’ve already met the idea of 
photons – these little packets of light that transfer energy and momentum from one charged 
object to another.  Well, at any given time, some of the energy and momentum of this interaction 
are invested in the photons that mediate it. 

 

 

 

Students aren’t prepared for the following, but it proves that the electric forces don’t make up the 
difference in the magnetic forces (both measured in the lab frame, not in the particles’ frames.)
 Our text doesn’t really facilitate answering this question in terms of the position vector 
we’re already using, so I’ll borrow from Griffiths: 
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So the sum of these two is 
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There’s no way for this to be equal and opposite to the excess magnetic force.  For one thing, the 
two forces don’t even point in the same direction (the electric force, rather remarkably, is along r 
(in spite of the particles’ motions) while the magnetic force is perpendicular to it).  

Of course, allowing that the particles, when interacting with each other thus (and magnetically) 
will be accelerating, the result must change and there will be a component not along r21.  It’s hard 
to guess what the result will look like, but it could be found by using Griffith’s 10.67 and 
incorporating the accelerations (presumably assuming non-relativistic is good enough) due to the 
interactions into the equations.  

 

What we did is add up the (average) forces on all of the moving charges. As we discussed for the 
Hall effect, the magnetic force causes opposite surface charges on opposite sides of the wire. 
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The surface charges in the diagram above produce a downward electric field, which exerts a 
downward force on the positive atomic cores.  

 

Example 3: a rigid current loop in an external magnetic field 

   
r 
B ext

   
r 
F L    

r 
F R

 
The forces cause the loop to twist. 

   
r 
B ext

   
r 
F L

   
r 
F R
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The loop will be in equilibrium (no net force or torque) when it is perpendicular to the 
external magnetic field. If there is any friction, the loop will end up in an orientation so that 

  
r 
B loop ||

r 
B ext . Remember that the loop acts like a magnet (magnetic dipole). 
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Motional emf: 

Suppose a metal bar of length L is moved through a magnetic field with a magnitude B into the 
page at a speed v. 

 
There is a magnetic force on each electrons in the wire: 

  
r 
F mag = −e( )r 

v ×
r 
B  

Fmag = evB downward 

There is also a force on each proton, but they are not free to move. Electrons will move from the 
top of the bar to its bottom, polarizing the bar. This will produce a downward electric field and 
upward force   

r  
F e = −e

r  
E  on each electron in the bar. Equilibrium will be reached when the 

magnetic and electric forces are the same size: 

evB = eE  
The potential difference between the ends of the bar is: 

∆V = EL = vBL  

The bar acts like a battery because a charge separation is maintained by a non-Coulomb force (in 
this case the magnetic force). Suppose the bar is pulled along two frictionless metal rails which 
are connected by a resistor (as shown below). 

 
The moving bar will cause the rails to become charged and cause a current through the resistor. 
Note that the electrons move the “wrong” way (opposite direction of the electric force) through 
the bar. This is the result of the non-Coulomb force, which does a work: 

W = evB( )L  

so the non-Coulomb work per charge or “motional emf” is: 

emf = vBL  
The motional emf is usually relatively small and not sustained, so it can be hard to detect. 
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Look at the electric field to see that 
  
∆V = −

r  
E ⋅ d

r  
l ∫  for a round trip is zero. 

 
As the bar moves at a constant speed and a steady current flow, the resistor dissipates energy to 
its surroundings. Where does this energy come from? Work must be done on the bar to keep it 
moving. 

 
If there is a current I flowing upward through the bar, the magnetic force on it is ILB to the left 
on it. Someone or something must apply the same size force to the right on the bar to keep it 
moving at a constant speed. The power input is work per time: 

Power= F∆x ∆t = Fv = ILB( )v  

The power dissipated by the resistor is: 

Power= I emf( )= I LBv( ) 
These agree as they should, since no power is being stored up in the system.  

 

 

 

Monday: Torque and Energy for magnetic dipoles (only skim Sect. 20.6) 


