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Today:  10 Simple Harmonic Motion & Elasticity 1st  ½ 
Monday: 10 Simple Harmonic Motion & Elasticity 2nd  ½    HW1:  2,4,8 
Wednesday:  16 Waves & Sound 1st 1/3     HW2: 
Friday:  16 Waves & Sound 2nd 1/3   HW1 redo,   HW3: 
Lab:   Lab 1 : Harmonic Motion 
 
Materials  

Demos:  
Mass on a spring hung from a beam (spring, mass, beam) 
Tuning Fork & resonance box (fork, box, microphone, oscilloscope) 
Guitar string (string, mass, mass hook, wires, oscilloscope) 
Spring Scale (spring scale, something to hang it from, mass) 
Handouts: 
• Exams & old homework 
• Syllabus 
• Lab 1 
• Office Hour Survey 

Brief Intro. 
o Instructor:  Eric Hill 

§ Edu.:  B.A. Carleton College, PhD U. of Minn. – Condensed 
Matter Physics 

§ Research:  STM studies of surface processes of individual 
molecules. 

§ Schedule:  221 and 107 this semester (so I’ll be a little less 
available than I was last).   

§ Office Hours:  To Be Determined 
o Physics 221 

§ 2nd semester of a 2 semester algebra-based intro. Physics sequence.  
We hit the ground running this semester – assuming that your 
physics is up to speed thanks to Phys. 220 or a similar course at 
another college or in High School.  

Administrative: 
• Take Role 

o Check who’s there & that they are in the right lab section 
o The following folks may wish to see me after class 

§ Brandon doesn’t have a lab section 
§ Karen isn’t registered yet 
§ About 7 students don’t appear to have taken ~prerequ. 

• Likely due to 220 not having been listed as a pre-
requisite 

• Strongly encourage to consider dropping 221 and 
taking either 231 (first in the Calc. Based sequence) 
or 220 next Fall and 221 next Spring. 

o Office Hour Survey  
§ Instructions: Grayed out times are off limits, mark an “N” in the 

time blocks where you have a conflict, mark a “Y” in the blocks 
that are good for you, pass it on. 

o Open door policy, whether it’s an office hour or not, I’m generally 
available in the white time blocks. 

• Syllabus  
o What’s changed 
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§ No Group Problems – you’ve learned the basics of 
problems solving technique, now it’s up to you 

§ No Pre-Lecture Questions  – you’ve seen for yourself the 
value of reading before lecture 

§ No Pre-Lab Questions  – you’ve seen for yourself the 
value of thinking about lab before performing lab 

§ Homework  
• Assigned daily, over material just covered – tighten 

the loop 
• Graded Boolean, but with the ability to redo – 

improve homework skills & decrease grading time 
• Read Homework section of Syllabus & see 

schedule. 
 
• Course Background  

o Physics Program:  
§ Experiment :  Observing and the world around us & translating 

those observations into the vocabulary of mathematics (numeric 
quantities). 

§ Theory :  Using the grammar of mathematics (equations) to 
describe or model motion and interaction in the real world – start 
with info. about initial conditions & propagate that info through 
mathematical tools to predict info about final conditions. 

§ Refinement :  a feedback loop of experiment, comparison with 
theory, and modification of experiment and theory until they agree.  

o Physics 220 
§ Classical Mechanics:  The study of Motion and the transfer of 

Motion via Interactions.   
§ Fundamental Principle:  Motion is neither created nor destroyed, 

but transferred via interactions. 
§ Topics 

• What topics did we cover last semester? 
• Kinematics (motion) in 1 & 2 –D and rotational 

o Kinematics tools 
§ Time 
§ Distance 
§ Position 
§ Displacement 
§ Speed 
§ Velocity 
§ Acceleration 
§ Angular versions of the above 

• Dynamics (interactions) in 1 & 2-D and rotation 
o Dynamics tools 

§ Force (Newton’s 3 laws) 
§ Momentum & Impulse 
§ Work & Energy (Kinetic & Potential) 
§ Torque & Angular Momentum 

• Systems of Particles 
o Rotation of Extended bodies 
o Fluids 
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o Heat 
o Thermodynamics 

§ Ideal Gas Law & Kinetic Theory 
§ Skills 

• Mathematical 
• Problem Solving 
• Quantitative Reasoning 
• Study Skills 
• Homework 
• Teacher Comprehension 

o Carry-over from Phys 220. 
§ The skills honed last semester will be called upon this semester.  

Many of the topics of last semester will be built upon, in part or in 
whole, this semester. 

o What’s new 
§ Topics fall under three main, overlapping, headings 

• Harmonic Motion: A kind of motion 
o Wave phenomena:   

§ Sound (systems of particles)  
§ Light (Electricity and Magnetism) 

• Optics 
• Electricity & Magnetism:  A kind of interaction 

o E & M forces and fields 
o Circuitry 
o Light & Optics 

• Modern Physics (refinements of mechanics) 
o Relativity (high speed mechanics) 
o Quantum (small mechanics) 

§ Atoms  
§ Nuclei 
§ Radiation 

 
Without Further Ado 
 

10 Simple Harmonic Motion and Elasticity 
• Intro:   We kick this off by talking about Hooke’s law, xkF spSp

rr
∆−=→ .  It 

says that the force with which a spring pulls back to its equilibrium length, 
Fsp, is directly proportional to how far it’s been stretched or compressed from 
that length, ∆x.   

• I should point out immediately that this does not describe an interaction on the 
fundamental level, in terms of an electric, magnetic, weak, strong, or 
gravitational forces.  That fact begs the question ‘how does it relate to the 
fundamental forces?’ 

• Indeed, I want to understand where this simple, yet mystical, relationship 
comes from.  To see that, we’re going to build a spring, atom by atom.  Not 
only will we get a sense of where this comes from, but we’ll also see that this 
relationship scales straight down to the individual atomic level!  And if that 
beauty isn’t enough to justify our digging so deeply, how about this: if this 
holds for individual atoms, then it holds for most anything made of individual 
atoms, i.e., not just springs, but everything around you!  Ex. Atoms in their 
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molecules, hairs in your ears, heads on drums, and even (disastrously) 
suspension bridges.   

• With that established, we’ll look at what kind of motion a force like this 
causes, Simple Harmonic Motion.  Understanding atomic scale nature of 
Hooke’s law, you’ll appreciate that it is no mere coincidence that so much 
solid mater executes (approximately) Simple Harmonic Motion. 

•  
• Inter-Atomic Restoring Force 

o Consider a chunk of material, say, a rod of iron.  Imagine zooming in 
so you can see individual atoms.  From our discussion of 
thermodynamics, we know that the atoms in the rod have some kinetic 
energy, they’re moving a little.  But we also know from the simple fact 
that the rod doesn’t desintegrate, that there are some bonds that oppose 
this motion and keep the atoms relatively stationary.  When an atom 
gets thermally knocked a bit to the left, the bonds it has with its 
neighbors must conspire to send it back home again.  The net force due 
to these bonds is of a class called a “restoring” force, for it restores the 
atom back to its original position.  

 
 
 
 
 
 
 
 
 
 
 
o To speak exactly quantitatively about this restoring force, we’d need to 

know the number and distribution of all the charged particles that 
make up the individual atoms.  But to speak only approximately we 
can  

• a) use that we know that the net force must depend on the atom 

being displaced, i.e., 2)( →netxF
r

, otherwise all mater above 0 
K would vaporize  

• b) use that most mathematical functions can be expanded in a 
Taylor series. 

• Taylor series of some function which depends on x, 
F(x), expanded about an evaluation point of xo:  
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• So, we can represent our net force as an expansion series.  We 

are imagining that the atom only strays a little from its 
equilibrium position, xeq, so that will be the point about which 
we expand the function. 
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• The first term in the series, net force evaluated at the 

equilibrium point, is by definition 0.  That makes the 
second term the first remaining.  We’re talking about 
small displacements, the second term is proportional to 
something small, the third term is proportional to 
something small squared, or qualitatively speaking, 
something really small, subsequent terms are even 
smaller still.  So, as long as we are talking about only 
small displacements, the net force can be approximated 

as ( )eq
x

net
net xx

dx
xdF

xF
eq

−≈
)(

)(  

• The exact value of the derivative of the net force, 
evaluated at the equilibrium point, depends on all the 
nitty-gritty info of charge distribution etc.  but at the 
end of the day, it is just some number, some constant, 
furthermore, it must be negative since that would give 
the observed behavior of the atom being pulled back to 
its equilibrium point.  So we can replace the notation 
for the derivative… with the notation for just some 

negative number: atom
x

net k
dx
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• This result looks a lot like Equation 10.2, Hooke’s Law.  
The only difference is that Hook’s law is talking about 
a spring, not a single atom, but the form of the equation 
is the exact same.  We’ll see why. 

o Scale up 
• Series 
• One way of looking at this is to say that if I were able to reach 

into the chain of atoms and pull just one atom to the right with 
force F, it would move a distance ∆x., or the chain would 

lengthen by ∆L = ∆x..  LkxkF atomatomapplied ∆=∆=  
 
 
 
 
 
 

 
• Now say it and its neighbor along the chain are both free to 

move, it takes just a little showing, but for the same force, I get 

0 
0 

appliedF
r

∆x 
∆L 
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the same amount of stretch out of both of them, or twice the 

total stretch. ∆L = 2∆x.  2
LkxkF atomatomapplied

∆=∆=  

 
 
 
 
 
• If three atoms were free to move, I’d get three times the 

displacement…if N atoms were free to move, I’d get N times 

the displacement.  L
N

kxkF
Long

atomatomapplied ∆=∆=
1

. 

• Parallel 
 

 
 
 
 
 
 
• Now say don’t just have one chain of atoms to stretch, but a 

rod of atoms, say 10 atoms wide and 20 atoms tall.  Now to the 
same applied force is distributed among all 10 × 20 = 200 
atoms.  Each only gets 1/200th of the force, and so moves 
1/200th of the distance.  The resulting equation looks like  

• L
N

NN
kF

Long

deepWide
atomapplied ∆=  

• Note:  This relationship holds for any uniform bulk solid.  The 
basic idea can be extended to a metal bar or to your desk top – 
This describes how hard it is to squash or stretch something. 

10.1 The Ideal Spring and Simple Harmonic Motion 
• A spring is just such a collection of atoms, so many atoms long, so many wide, 

and so many deep. 
10.1.1 Equation 10.1 

• A spring’s compression or expansion is proportional (approximately) to the 
force pushing or pulling on it.  

• LkF spSp ∆=→  

o SpF→  is the force applied to the spring to stretch or compress it. 
o ∆L is the change in its length due to stretching or compressing 
o ksp is the called the spring constant, has units of  N/m.  It determines a 

spring’s “stiffness” – the bigger k, the stiffer the spring, i.e., the harder 
to stretch or compress.  The spring constant relates to fundamental 
properties, the number of atoms across the cross-section of the spring, 
Nw×Nd the number of atoms long the spring is, NL and the 

appliedF
r

∆x ∆x 
   ∆L 

∆x 

appliedF
r
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fundamental inter-atomic forces by 
L

dW
N

NN
atomsp kk ×= , and 

eqx
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atom dx
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−=  

10.1.2 Example Problem: Similar Springs, different lengths  
 
Demo: Similar springs of different length. 
 Hang a mass from ½ along a spring, measure how far it stretches.  Ask if I hang 
the same mass from the end of the spring, will it stretch less, just as much, or more? 
  It stretches more, twice as much to be exact.  Why? Look at our 
relationship between the length of a chain of atom and the spring constant: 

L

dW
N

NN
atomsp kk ×= .  Twice as many atoms long, twice as much stretch. 

 
• Say you hang a mass from a spring and it stretches by 0.3 m.  Then 

you cut the spring in half and hang the same mass from just one of the 
halves.  By how much will the spring be stretched? 

o ∆L1 = 0.2 m, ∆L1/2 = ? 
o Equations  

§ 11. LkF spSp ∆=→ ,  2/12/1. LkF spSp ∆=→ ,  

§ 
1.1. L

dW

N
NN

atomsp kk ×= , 
2/1.2/1. L

dW

N
NN

atomsp kk ×=  

§ NL½  = ½ NL1 
o Algebra 

§ 
2/1.

2/1
sp

Sp

k

F
L →=∆  

Find ksp ½  

• 
2/1.2/1. L

dW

N
NN

atomsp kk ×=  

Find NL½  
o NL½  = ½ NL1 

• 
1.1.2

1 22/1. L

dW

L

dW
N

NN
atomN

NN
atomsp kkk ×× ==  

Find ksp 1 

o 
1.1. L

dW
N

NN
atomsp kk ×=  

• 1.2/1. 2 spsp kk =  
Find ksp 1 

o 
1

1. L

F
k Sp

sp ∆
= →  

• 
1

2/1. 2
L

F
k Sp

sp ∆
= →

 

§ 1

1

2/1 2
1

2
L

L

F
F

L
Sp

Sp ∆=

∆

=∆
→

→  
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o Numbers  

mmLL 15.03.0
2
1

2
1

12/1 ==∆=∆  

10.1.3 Example Problem: Spring Scale 
o Just as a mercury thermometer makes use of the linear relationship 

between the mercury column’s Temperature and its Length, A spring 
scale makes use of the linear relationship between the Force tugging 
on (or compressing) a spring and its Length.  

Demo:  Spring Scale 
o Say the spring of the scale lengthens by 0.04 m when reports holding a 

4 kg weight.  What is the Spring constant, ksp? 
 
o ∆L = 0.04 m 
o m = 4 kg 
 

o 
mgwF

LkF

Sp

spSp

==

∆=

→

→
 

o 
L

F
k Sp

sp ∆
= →  

• mgF Sp =→  

o 
L

mg
k sp ∆

=  

o m
N

sp m
smkg

k 980
04.0

/8.94 2

=
⋅

=  

 
10.1.4 Hooke’s Law 

• We have an equation for the force applied to  a spring (and the resulting 
lengthening or compressing); by Newton’s third Law, we can say that the force 
applied by the spring is equal and opposite to this: LkFF spSpSp ∆−=−= →→  

• Equation 10.2  xkF spSp

rr
∆−=→  

• Note:  This is not a fundamental force (gravitation, electric, magnetic,…), rather 
it is a mathematical result of the summing approximations of many individual, 
fundamental interactions.  In most cases, the underlying forces are electric, but for 
practical purposes, we needn’t model on that level. 

10.2 Simple Harmonic Motion and the Reference Circle  
• Intro.  So far, we’ve only talked about static situations – the spring is stretched to 

some new length, and there it stays.  Now we’ll think about motion.  Say you 
have a mass on a spring’s end, and you pull it out of equilibrium.  What happens? 

Demo:  mass on spring, let it bob 
o The mass bobs up and down.  Let’s think about what’s happening at the 

two extremes and at the equilibrium point in the middle. 
§ At the bottom, the mass is stationary, p = 0, but there is a net force, 

t
p

ymgykgmykF spspmet ∆
∆

=−∆=−∆−=
r

rr
ˆ)||(ˆ , pulling up, so 

momentum changes from 0 to up – the mass moves up,. 
• As the mass rises toward the equilibrium position, the net 

force continues to accelerate the mass faster and faster, 

0.04m 

4 kg 
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meanwhile the net force itself is shrinking as the spring 
becomes less stretched. xkF spSp

rr
∆−=→  

§ In the middle, the spring is in equilibrium, there are no forces, so 
the momentum remains unchanged.  Since the momentum was 
pointing up before the mass arrived in equilibrium, it continues 

pointing up, and the mass continues to move up. 
t
p

∆
∆

=
r

0  

• As the mass rises above equilibrium, the spring compresses 
and produces a force pushing down toward the equilibrium 
position.  This is the opposite direction of the mass’s 
momentum, so the momentum changes to decrease. 

y
t
p

ymgykgmykF spspmet ˆˆ)||(ˆ
∆
∆

−=−∆−=−∆−=
rr

 

§ At the top, the mass has lost all of its momentum and comes to a 
halt.  At this point the spring has maximum stretch & maximum 
force, so it pulls the mass back down. 

o Qualitative Plot of Position Vs. Time  
§ Start’s at maximum position, Xmax,  initially at rest 
§ It begins moving toward the equilibrium position, slowly at first 
§ Under the constant application of the spring force, it moves faster 

and faster 
§ By the time it arrives at the equilibrium position, it is moving its 

fastest, but also at that time the spring force has dwindled to 
nothing. 

§ The mass below equilibrium now feels a slight pull back up, so it 
begins to decelerate 

§ It continues to loose speed until it bottoms out at –Xmax.  
§ Then the process replays in reverse – pulling the mass back up…  
§ Q:  What mathematical (trig) function does this plot look like? 

• Cosine 
§ Q:  What is the argument of Cosine when it is maximized, crosses 

zero, minimized, crosses zero again? 
o Mathematical description of Motion 

§ Displacement 
§ To make things simplest, we’ll just consider a mass on a spring 

lying horizontally on a frictionless table, i.e., a mass subject only 
to the force of the spring.  Furthermore, we’ll set the origin at the 
equilibrium position. 

§ xkxkF spspmSp −=∆−=→ ,  

§ 
2

2

dt
xd

m
dt
dt
dx

d
m

dt
dv

mmaFnet ====  

§ mSpnet FF →=  

§ 
( )xx

dt
d

xkx
dt
d

m

m
k

sp

sp−=

−=

2

2

2

2

 

t 

x 

xeq 

xmax 

Cos(0)       Cos(π)         Cos(2π) 
         Cos(π/2)   Cos(3π/2) 
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• Any one know a mathematical function whose second 
derivative is the negative of the function? 

o What is the derivative (slope) of Cosine?  
§ – Sine 

o What is the derivative (slope) of Sine? 
§ Cosine 

• ( )txx ωcosmax=    
§ Plug this in and see what we get. 
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