This is a closed book, closed notes exam. An equation sheet (without any words) is allowed; please hand it in with your exam. Credit is assigned as noted. Partial credit will be awarded based on work shown.

Units

Resistance
Capacitance
Charge
Current
Electric Potential, a.k.a Voltage

Useful Constants

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{c}}=8.99 \times 10^{9} N \cdot \mathrm{~m}^{2} / \mathrm{c}^{2} \\
& \mathrm{e}=1.60 \times 10^{-19} \mathrm{C} \\
& \varepsilon_{\mathrm{o}}=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{~m}^{2}\right)
\end{aligned}
$$

1) (4pts) A conducing sphere has a 5.6×10^{8} protons and 5.4×10^{8} electrons, what is the net charge on the sphere?
$Q=e\left(N_{p}-N_{e}\right)=1.6 \times 10^{-19} \mathrm{Coul} \cdot\left(5.6 \times 10^{8}-5.4 \times 10^{8}\right)=3.2 \times 10^{-12} \mathrm{Coul}$
2) (4pts) Two uncharged, conducting spheres, A and B, are held at very near, but not touching. A positively charged rod is brought in and touches sphere A and is removed. Then a neutral metal rod touches sphere B and is removed. How will the spheres be charged, if at all?

Sphere A
a) positive
b) positive
c) negative
d) negative negative
e) neutral neutral
Ω (Ohm)
F (Farad)
C (Coulomb)
A (Amp)
V (Volt)
-

3) (4pts) A charge Q exerts a 12 N force on another charge, q. If the distance between the charges is cut in $1 / 2$, what is the magnitude of the force between Q and q ?

$$
F_{1}=12 N=k \frac{Q q}{r_{1}^{2}} \quad \mathrm{r}_{2}=1 / 2 \mathrm{r}_{1}
$$

$$
F_{2}=?=k \frac{Q q}{r_{2}^{2}}=k \frac{Q q}{\left(\frac{1}{2} r_{1}\right)^{2}}=k \frac{Q q}{\frac{1}{4}\left(r_{1}\right)^{2}}=4 k \frac{Q q}{\left(r_{1}\right)^{2}}=4 F_{1}=4 \cdot 12 \mathrm{~N}=48 \mathrm{~N}
$$

4) (4pts) If the $3 \mu \mathrm{C}$ charge gets 6 field lines, draw field lines for the collection of charge below. Don't forget to indicate their direction.

$$
\begin{aligned}
& +3 \mu \mathrm{C} \quad \bigcirc \\
& -6 \mu \mathrm{C} \quad \bigcirc \quad \bigcirc \quad+3 \mu \mathrm{C}
\end{aligned}
$$

5) (4pts) Two positive point charges are separated by a distance R. This configuration is characterized by an electric potential energy P.E.i If the distance between the charges is doubled, in terms of the initial electric potential energy of the system, what is its new potential energy?
P.E. $\cdot_{i}=k \frac{Q q}{r_{i}} \quad \mathrm{r}_{\mathrm{f}}=2 \mathrm{r}_{\mathrm{i}} \quad$ P.E. ${ }_{f}=k \frac{Q q}{r_{f}}=k \frac{Q q}{2 r_{i}}=\frac{1}{2} k \frac{Q q}{r_{i}}=\frac{1}{2} P . E_{\cdot}$
6) (4pts) The electric potential energy of a charge decreases by 0.003 J when moved through an electric potential difference (voltage) of +10 V . What must be the charge's sign and magnitude?
$\Delta P . E_{\text {elect }}=-0.003 \mathrm{~J}=q \Delta V=q \cdot 10 \mathrm{Volts} \quad q=\frac{\Delta P \cdot E_{\text {elect }}}{\Delta V}=\frac{-0.003 \mathrm{~J}}{10 \mathrm{Volts}}=-0.0003 \mathrm{Coul}$
7) (4pts) A parallel plate capacitor with plates of area A and pate separation d_{i} is charged so that the potential difference between its plates is ΔV_{i}. The capacitor is then isolated and its plate separation is increased to $d_{f}=4 d_{i}$. In terms of the old potential difference between the plates, ΔV_{i}, what is the new value?

$$
\begin{aligned}
& Q=C_{i} \Delta V_{i}=C_{f} \Delta V_{f} \\
& \\
& \frac{A \varepsilon}{d_{i}} \Delta V_{i}=\frac{A \varepsilon}{d_{f}} \Delta V_{f} \\
& d_{f}=4 d_{i} \quad C_{i}=\frac{A \varepsilon}{d_{i}} \quad C_{f}=\frac{A \varepsilon}{d_{f}} \quad \frac{A \varepsilon}{d_{i}} \Delta V_{i}=\frac{A \varepsilon}{4 d_{i}} \Delta V_{f} \\
& \Delta V_{i}=\frac{1}{4} \Delta V_{f} \\
& \Delta V_{f}=4 \Delta V_{i}
\end{aligned}
$$

8) (4pts) A capacitor is initially charged to an electric potential difference of $\Delta V_{\text {batt. }}=2 \mathrm{~V}$. It is then disconnected and connected to a different battery. If the ratio of the final to the initial energy stored in the capacitor is $\frac{P . E_{\cdot}}{P \cdot E_{\cdot}}=4$, what must be the voltage of the second battery?
P.E. ${ }_{i}=\frac{1}{2} C\left(\Delta V_{\text {batt. } 1}\right)^{2} \quad$ P.E. $._{f}=\frac{1}{2} C\left(\Delta V_{\text {batt.2 }}\right)^{2} \quad \frac{P \cdot E_{\cdot}}{P \cdot E_{\cdot_{i}}}=4 \quad \Delta V_{\text {batt. } 1}=2 \mathrm{~V}$
$\frac{P \cdot E_{\cdot}}{P \cdot E_{\cdot i}}=4=\frac{\frac{1}{2} C\left(\Delta V_{\text {batt. } 1}\right)^{2}}{\frac{1}{2} C\left(\Delta V_{\text {batt } 2}\right)^{2}}=\frac{\left(\Delta V_{\text {batt. } 1}\right)^{2}}{\left(\Delta V_{\text {batt. } 2}\right)^{2}}$
$\sqrt{4}=\sqrt{\frac{\left(\Delta V_{\text {batt. } 1}\right)^{2}}{\left(\Delta V_{\text {batt. } 2}\right)^{2}}} \Rightarrow 2=\frac{\left(\Delta V_{\text {batt. } 1}\right)}{\left(\Delta V_{\text {batt } 2}\right)} \Rightarrow \Delta V_{\text {batt } 2}=2 \Delta V_{\text {batt } 1.1}=2 \cdot 2$ Volts $=4$ Volts
9) (4pts) Which one of the following situations results in a conventional electric current that flows westward?
a) a beam of electrons moves westward
d) a beam of protons moves westward
b) an electric dipole moves eastward
e) a beam of neutral atoms moves westward
c) a beam of protons moves eastward
10) (4pts) When a light bulb is connected to a 9 Volt battery, a current of 0.3 A passes through the bulb filament. What is the resistance of the filament?

$$
\Delta V=I R \Rightarrow R=\frac{\Delta V}{I}=\frac{9 \text { Volts }}{0.3 \mathrm{Amps}}=30 \Omega
$$

11) (4pts) What is the resistivity of a wire with radius $5.04 \times 10^{-4} \mathrm{~m}$, length 3.00 m , and resistance 0.1Ω ?

$$
A=\pi r^{2} \quad R=\rho \frac{L}{A} \Rightarrow \rho=R \frac{A}{L}=R \frac{\pi r^{2}}{L}=0.1 \Omega \frac{\pi\left(5.04 \times 10^{-4} \mathrm{~m}\right)^{2}}{3.00 \mathrm{~m}}=2.6 \times 10^{-8} \Omega \cdot \mathrm{~m}
$$

12) (4pts) A 10Ω resistor dissipates 1.5 Watts when it is connected to a battery. What is the batteries voltage?

$$
\begin{aligned}
& P=\frac{(\Delta V)^{2}}{R} \Rightarrow(\Delta V)^{2}=P R \\
& \Delta V=\sqrt{P R}=\sqrt{1.5 \mathrm{Watts} \cdot 10 \Omega}=3.9 \mathrm{Volts}
\end{aligned}
$$

13) (4pts) Two 15Ω and three 25Ω light bulbs and a 24 Volt battery are connected as shown. What is the current that passes one of the 25Ω bulbs?

$\Delta V_{\text {battery }}=24$ Volts
$\Delta V_{\text {bottom }}=\Delta V_{\text {battery }}=24 \mathrm{Volts}$
Applying Ohm's law gives
$I_{25}=I_{\text {bottom }}=\frac{\Delta V_{\text {bottom }}}{R_{\text {bottom }}}=\frac{24 \mathrm{Volts}}{75 \Omega}=0.32 \mathrm{Amps}$
14) (4pts) Three resistors, $6.0 \Omega, 9.0 \Omega, 15 \Omega$, are connected in series in a circuit. What is the equivalent resistance of this combination of resistors?

$$
R_{\text {series }}=R_{1}+R_{2}+R_{3}=6.0 \Omega+9.0 \Omega+15 \Omega=30 \Omega
$$

15) (12 pts) Given the circuit bellow, how much current is drawn out of the battery? (It would help to find

$I_{\text {Battery }}=\frac{\Delta V_{\text {battery }}}{R}=\frac{3.5 \mathrm{Volts}}{1.75 \Omega}=2 \mathrm{Amps}$
16)

a) (4 pts) Sketch enough Electric Field Lines to represent the character of the field everywhere.
b) (4 pts$)$ Sketch enough Equipotential lines to represent the character of the voltage everywhere.
c) (16 pts) Evaluate the Electric Field at point P, magnitude and direction.

$$
\vec{E}_{n e t}(p)=\vec{E}_{+4}(p)+\vec{E}_{-4}(p)=\left|\vec{E}_{+4}(p)\right| \hat{x}+\left|\vec{E}_{-4}(p)\right| \hat{x}
$$

$$
\left|\vec{E}_{+4}(p)\right|=\left|k_{C} \frac{q_{+4}}{r_{+4 \rightarrow p}^{2}}\right|=\left|8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2} \frac{4 \times 10^{-6} \mathrm{Coul}}{(0.1 \mathrm{~m})^{2}}\right|=35.6 \times 10^{5} \mathrm{~N} / \mathrm{c}
$$

$$
\left|\vec{E}_{+4}(p)\right|=\left|k_{C} \frac{q_{-4}}{r_{-4 \rightarrow p}^{2}}\right|=\left|8.99 \times 10^{9} \mathrm{~N}^{\mathrm{m}^{2} / \mathrm{c}^{2}} \frac{-4 \times 10^{-6} \mathrm{Coul}}{(0.3 \mathrm{~m})^{2}}\right|=4.00 \times 10^{5} \mathrm{~N} / \mathrm{c}
$$

$$
\vec{E}_{n e t}(p)=\left|\vec{E}_{+4}(p)\right| \hat{x}+\left|\vec{E}_{-4}(p)\right| \hat{x}=35.6 \times 10^{5} \mathrm{~N} / \mathrm{c} \hat{x}+4.00 \times 10^{5} \mathrm{~N} / \mathrm{c} \hat{x}=39.6 \times 10^{5} \mathrm{~N} / \mathrm{c} \hat{x}=4.0 \times 10^{6} \mathrm{~N} / \mathrm{c} \hat{y}
$$

d) (12 pts) Evaluate the Electric Potential (voltage) at point P .

$$
\begin{aligned}
& \Delta V_{\text {net }}(p)=\Delta V_{+4}(p)+\Delta V_{-4}(p)=k_{C} \frac{q_{+4}}{r_{+4 \rightarrow p}}+k_{C} \frac{q_{-4}}{r_{-4 \rightarrow p}} \\
& \Delta V_{\text {net }}(p)=8.99 \times 10^{9} \mathrm{~N}^{2} / \mathrm{c}^{2} \frac{4 \times 10^{-6} \mathrm{Coul}}{0.1 \mathrm{~m}}+8.99 \times 10^{9} \mathrm{~N}^{2} / \mathrm{c}^{2} \frac{-4 \times 10^{-6} \mathrm{Coul}}{0.3 \mathrm{~m}} \\
& \Delta V_{\text {net }}(p)=3.596 \times 10^{5} \text { Volts }-1.199 \times 10^{5} \text { Volts }=2.4 \times 10^{5} \text { Volts }
\end{aligned}
$$

