Calculus I: Another Fundamental Theorem of Calculus!

Goal: Find a formula for the derivative of a definite integral with a variable upper limit.

1) Let $G(x)=\int_{3}^{x}\left(t^{3}+2 t\right) d t$. To compute $G^{\prime}(x)$, first use the Fundamental Theorem of Calculus to evaluate $\int_{3}^{x}\left(t^{3}+2 t\right) d t$. Your answer will have at least one x in it.
$G(x)=\int_{3}^{x}\left(t^{3}+2 t\right) d t=$

$$
\left.\right|_{t=3} ^{t=x}=
$$

Second, compute the derivative of $G(x): G^{\prime}(x)=$

Another way to write $G^{\prime}(x)$ is as $G^{\prime}(x)=\frac{d}{d x}\left[\int_{3}^{x}\left(t^{3}+2 t\right) d t\right]=$
2) Let $G(x)=\int_{1}^{x} \sqrt{t} d t$. Compute $G^{\prime}(x)$ using the two-step method of Problem 1.

$$
G(x)=\int_{1}^{x} \sqrt{t} d t=\int_{1}^{x} t^{1 / 2} d t=\left.\quad\right|_{t=1} ^{t=x}=
$$

$$
G^{\prime}(x)=
$$

Another way to write $G^{\prime}(x)$ is as $\frac{d}{d x}\left[\int_{1}^{x} \sqrt{t} d t\right]=$
3) Let $G(x)=\int_{a}^{x} f(t) d t$, and let $F(t)$ be an antiderivative of $f(t)$. Compute $G^{\prime}(x)$ using the two-step method of Problem 1.
$G(x)=\int_{a}^{x} f(t) d t=\left.\quad\right|_{t=a} ^{t=x}=$

$$
G^{\prime}(x)=
$$

Another way to write $G^{\prime}(x)$ is as $\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=$

Another Fundamental Theorem of Calculus! - page 2

3) (continued) We have just established the formula:

$$
\begin{array}{ll}
F(x)=\int_{a}^{x} f(t) d t \quad \text { or } \quad \frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]= \\
F^{\prime}(x)= &
\end{array}
$$

In Problems 4, 5, and 6, use the formula from Problem 3 to write the derivative as quickly as you can. This means write the derivative without showing any work!
4) $\quad G(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t$
$G^{\prime}(x)=$
5) $\frac{d}{d x}\left[\int_{2}^{x} e^{3 t} d t\right]=$
6) $\quad F(x)=\int_{-1}^{x} \cos (t) d t$
$F^{\prime}(x)=$
7) Explain why it makes sense to call $F(x)=\int_{a}^{x} f(t) d t$ an antiderivative of $f(x)$.
8) The rule you wrote in Problem 3 is called the Second Fundamental Theorem of Calculus. Explain how the Second Fundamental Theorem of Calculus shows that integration and differentiation are inverse processes.

Begin with $f: \quad f$
Integrate:
Differentiate:

Another Fundamental Theorem of Calculus! - page 3

9) Let $H(x)=\int_{2}^{x^{3}} \cos (t) d t$. Compute $H^{\prime}(x)$ using the two-step method of Problem 1.

$$
\begin{aligned}
H(x)=\int_{2}^{x^{3}} \cos (t) d t=\left.\quad\right|_{t=2} ^{t=x^{3}} & = \\
H^{\prime}(x) & =
\end{aligned}
$$

10) Let $H(x)=\int_{1}^{\sin (x)} e^{3 t} d t$. Compute $H^{\prime}(x)$ using the two-step method of Problem 1.

$$
\begin{aligned}
& H(x)=\int_{1}^{\sin (x)} e^{3 t} d t=\left.\right|_{t=1} ^{t=\sin (x)}= \\
& H^{\prime}(x)=
\end{aligned}
$$

11) Let $H(x)=\int_{a}^{g(x)} f(t) d t$, and let $F(t)$ be an antiderivative of $f(t)$. Compute $H^{\prime}(x)$ using the two-step method of Problem 1.
$H(x)=\int_{a}^{g(x)} f(t) d t=\left.\quad\right|_{t=a} ^{t=g(x)}=$

$$
H^{\prime}(x)=
$$

Another way to write $H^{\prime}(x)$ is as $\frac{d}{d x}\left[\int_{a}^{g(x)} f(t) d t\right]=$
We have just established the formula:

$$
\begin{array}{lll}
F(x)=\int_{a}^{g(x)} f(t) d t & \text { or } & \frac{d}{d x}\left[\int_{a}^{g(x)} f(t) d t\right]= \\
F^{\prime}(x)= &
\end{array}
$$

12) Use the formula from Problem 11 to write the derivative as quickly as you can. This means write the derivative without showing any work!

$$
\begin{aligned}
& F(x)=\int_{2}^{\cos (x)} \sqrt{1+t^{2}} d t \\
& F^{\prime}(x)=
\end{aligned}
$$

Another Fundamental Theorem of Calculus! - page 4

13) If $y=\int_{a}^{g(x)} f(t) d t$, then y is a composite function of x, with $y=\int_{a}^{z} f(t) d t$ and $z=g(x)$. Show how to apply the Chain Rule in the form $\frac{d y}{d x}=\frac{d y}{d z} \cdot \frac{d z}{d x}$ to obtain the rule you wrote in Problem 11.

Source: Inspired by Exploration 35 in Calculus Explorations, by Paul A. Foerster, Key Curriculum Press, 1998, page 36

