Calculus I: Optimization without Calculus

Quadratic functions and parabolas

The graph of the equation $y=a x^{2}+b x+c, a \neq 0$, is a parabola.
If $a>0$, the parabola opens upward (it's concave up).
If $a<0$, the parabola opens downward (it's concave down).
Notice that $y^{\prime \prime}=2 a$, so what we learned in pre-calculus classes is consistent with what we have learned in calculus class.
The vertex of the parabola has x-coordinate $x=\frac{-b}{2 a}$.
Notice that $y^{\prime}=2 a x+b=0$ for $x=\frac{-b}{2 a}$, so, again, what we learned in pre-calculus classes is consistent with what we have learned in calculus class.

Sine and cosine functions

The largest value of the cosine and sine function is 1 and the smallest value is -1 . This means that $-1 \leq \cos (\theta) \leq 1$ and $-1 \leq \sin (\theta) \leq 1$ for every angle (or argument) θ.
It also means, for instance, that the largest value of $f(x)=17 \cos (4 x+7)-12$ is
$17 \cdot 1-12=5$ and the smallest value of $f(x)=17 \cos (4 x+7)-12$ is $17(-1)-12=-29$, and in fact that $-29 \leq 17 \cos (4 x+7)-12 \leq 5$. Graph the function and see!

For what values of x do we have $f(x)=-29$? The answer is infinitely many values of x, but let's find just one! Since we get $f(x)=-29$ by making $f(x)=17 \cos (4 x+7)-12=17(-1)-12=-29$, we want to find x that makes $\cos (4 x+7)=-1$.
Since $\cos (\pi)=-1$, if we just make $4 x+7=\pi$, we'll have it.
You can check that $x=\frac{\pi-7}{4}$ results in $4 x+7=\pi$, hence in

$$
\cos (4 x+7)=\cos (\pi)=-1, \text { hence in }
$$

$$
f(x)=17 \cos (4 x+7)-12=17(-1)-12=-29
$$

Compute

$$
f\left(\frac{\pi-7}{4}\right)
$$

by hand. You should get -29 .

Therefore, the point $\left(\frac{\pi-7}{4},-29\right)$ is a global minimum point on the graph of $f(x)$.
Other values of the cosine and sine functions that will come in handy are:

$$
\begin{aligned}
& \cos \left(-\frac{\pi}{2}\right)=0=\cos \left(\frac{\pi}{2}\right)=\cos \left(\frac{3 \pi}{2}\right), \quad \cos (0)=1=\cos (2 \pi) \\
& \quad \sin \left(-\frac{\pi}{2}\right)=-1=\sin \left(\frac{3 \pi}{2}\right), \quad \sin (0)=0=\sin (\pi)=\sin (2 \pi), \text { and } \sin \left(\frac{\pi}{2}\right)=1
\end{aligned}
$$

