Calculus I: Optimization with Calculus

In the following problems, apply the Candidates Test if possible. If the Candidates Test does not apply, use the Second Derivative Test.

1. A farmer has 100 feet of fencing with which to build a rectangular enclosure. Use calculus to find the dimensions x and y of the enclosure resulting in maximum area. Begin by finding a formula and a domain for the area $A(x)$.
$A(x)=$ \qquad
\qquad $\leq x \leq$ \qquad .
2. A farmer must use 100 feet of fencing and an existing 20 ft side of a shed to enclose a rectangular pen. Use calculus to find the dimensions x and y of the enclosure resulting in maximum area. Begin by finding a formula and a domain for the area $A(x)$. Hints: Why is $x=0 \mathrm{ft}$ impossible? What about $x=14 \mathrm{ft}$? $x=24 \mathrm{ft}$? What value of x corresponds to $y=0 \mathrm{ft}$?
$A(x)=$ \qquad , $\leq x \leq$ \qquad .

3. A manufacturer wishes to build an open-top rectangular box by cutting out the corners and folding up the sides of a 5 inch by 7 inch piece of cardboard, as shown. Use calculus to find the dimensions (length, width, and height x) of the box with maximum volume. Begin by finding a formula and a domain for the volume $V(x)$. Hint: If $x=1$ inch, what would the dimensions of the box be? (Build the box!) Why is $x=3$ inches impossible?
$V(x)=$ \qquad , \qquad $\leq x \leq$ \qquad

4. A manufacturer wishes to build an open-top cylindrical container that holds exactly $40 \mathrm{in}^{3}$ of stuff. Use calculus to find the dimensions (radius r and height h) of the container constructed with the least amount of material. (Hint: Read and follow Section 4.5, Example 1.) Begin by finding a formula for the surface area $A(r)$. Notice that the Candidates Test does not apply, but the Second Derivative Test does!

Surface Area: $A(r)=$ \qquad , $r>0$

