Calculus I: Review of Tests for Local Extrema and Concavity

For each function f :
(a) Find all critical points (or critical numbers) of f.
(b) Use the First Derivative Test for Local Extrema to classify each critical point as corresponding to a local minimum point or a local maximum point or neither. Use your sign chart for the first derivative $f^{\prime}(x)$ to determine the intervals on which the graph of f increases and decreases.
(c) Use the Second Derivative Test for Local Extrema to classify each critical point $x=c$ for which $f^{\prime}(c)=0$ as corresponding to a local minimum point or a local maximum point. (Note: Part (c) should confirm some of your results from part (b).)
(d) Use the Second Derivative Test for Concavity to determine whether each value $x=c$ for which $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ is not defined is an inflection point or not. Use a sign chart for $f^{\prime \prime}(x)$ to determine the intervals on which the graph of f is concave up and concave down.
(e) Use the results of parts (a) through (d) to sketch the graph of the function f from approximately $x=-3$ to $x=3$. It will be helpful to find the y-coordinate of each point you considered in parts (a) through (d).

1) $f(x)=\frac{x}{e^{x}}$ (Hint: Look for a horizontal asymptote.)
2) $f(x)=x+\frac{1}{x}, x \neq 0$ (Hint: Look for vertical and oblique asymptotes.)
