Calculus I: Derivatives as Limits

Step A. For each function f and each value $x=a$, compute the derivative $f^{\prime}(a)$ accurate to 4 places after the decimal point by making successive approximations to $f^{\prime}(a)$ using the formula $f^{\prime}(a) \approx \frac{f(a+h)-f(a-h)}{2 h}$ for $h \approx 0$. You are required to list at least five estimates, including those for $h=1, h=0.1, h=0.01, h=0.001$, and $h=0.0001$, and to display at least three estimates in a row that are the same to 4 places after the decimal point. Record all estimates to at least 4 places after the decimal point.

Step B. Sketch the graph of f on the specified interval. For example, in Exercise 1, sketch the graph of $f(x)=x^{3}$ on the interval $-2 \leq x \leq 3$. This means your x-axis should run from $x=-2$ to $x=3$. Then sketch two lines: a secant line from the point with x coordinate $x=a-1$ to the point with x-coordinate $x=a+1$ on the graph of f, and a line tangent to the graph of f at the point $(a, f(a))$. Label each of these lines with its slope.

1. $f(x)=x^{3}, x=2,-2 \leq x \leq 3$.
[Answer to A: $f^{\prime}(2)=12.0000$ with estimates 13.0000 resulting from setting $h=1,12.0100$ resulting from $h=0.1,12.0001$ from $h=0.01$, and 12.0000 from $h=0.001, h=0.0001$, and $h=0.00001$. Answer to B: The secant line through the points $(1,1)$ and $(3,27)$ has slope 13 . The tangent line at the point $(2,8)$ has slope 12.0000]
2. $f(x)=\cos (x), x=-1$ and $x=2,-\pi \leq x \leq \pi$. [Answers: $0.8415,-0.9093$]
3. $f(x)=\ln (x), x=3,0<x \leq 5$. [Answer: 0.3333]
4. $f(x)=e^{x}, x=1,-1 \leq x \leq 2$. [Answer: 2.7183]
5. $f(x)=x^{2}, x=3,-1 \leq x \leq 4$. [Answer: 6.0000]

Challenge questions: For $f(x)=x^{2}$ and $a=3$, does $\frac{f(a+h)-f(a-h)}{2 h}=6.0000$ no matter what h is? For $f(x)=x^{2}$ and any fixed value of a, does $\frac{f(a+h)-f(a-h)}{2 h}$ always have the same value? What about for $f(x)=5 x^{2}$?
For $f(x)=5 x^{2}+4 x-7$? For $f(x)=b x^{2}+c x+d$?
6. $f(x)=3^{x}, x=2,-1 \leq x \leq 3$. [Answer: 9.8875]
7. $f(x)=x^{x}, x=2,0<x \leq 3$. To see the shape of the graph better, graph f from $x=0$ to $x=1$ and then from $x=1$ to $x=3$. [Answer: 6.7726]
8. $f(x)=|x|, x=-2$ and $x=0,-3 \leq x \leq 3$. [Answers: $f^{\prime}(-2)=-1.0000$

Although the limit of the estimates is 0.0000 , the derivative does not exist at $x=0$.]

Terminology to remember:
Ways to phrase Step A:
The estimate $\frac{f(a+h)-f(a-h)}{2 h}$ is ...
Compute the derivative $f^{\prime}(a)$.
... called a difference quotient.
... the slope of the secant line from the point $(a-h, f(a-h))$ to the point $(a+h, f(a+h))$ on the graph of f.

Compute the slope of the line tangent to the graph of f at the point $(a, f(a))$.

Compute the instantaneous rate of change of f at $x=a$.
... the slope of the secant line from the point $(a-h, f(a-h))$ to the point $(a+h, f(a+h))$ on the graph of f.
... the average rate of change from $x=a+h$ to $x=a-h$.

