Calculus I: The Most Ubiquitous Initial Value Problems

- 1) (a) Write a function f(x) for which f'(x) = f(x): f(x) =
 - (b) For your function f(x) from part (a), let g(x) = 3f(x): g(x) =
 Compute g'(x): g'(x) =
 Does g(x) have the property that g'(x) = g(x)?
 Compute g(0): g(0) =
 - (c) Write a function h(x) for which h'(x) = h(x) and h(0) = 7: h(x) =Explain why $h(x) = e^x + 6$ is <u>not</u> a solution to this problem.
 - (d) Write a function y(x) for which y'(x) = y(x) and $y(0) = y_0$: y(x) =
- 2) (a) Write a function f(x) for which f'(x) = 4f(x): f(x) =
 - (b) For your function f(x) from part (a), let g(x) = 3f(x): g(x) =

Compute g'(x): g'(x) =

Does g(x) have the property that g'(x) = 4g(x)?

Compute g(0): g(0) =

(c) Write a function h(x) for which h'(x) = 4h(x) and h(0) = 7: h(x) =

Explain why $h(x) = e^{4x} + 6$ is not a solution to this problem.

(d) Write a function y(x) for which y'(x) = k y(x) and $y(0) = y_0$, where k is any constant real number: y(x) =

Together, the *differential equation* y'(x) = k y(x) and the *initial value* $y(0) = y_0$ from Problem 2, part (d), form an *initial value problem (IVP*). A solution to an IVP is a function y(x) that satisfies the given differential equation and has the given initial value. So, for instance, the function h(x) you wrote in Problem 2, part (c), is a solution to the initial value problem that consists of the differential equation h'(x) = 4h(x) and the initial value h(0) = 7. 3) Solve the following initial value problems.

y(t) =

Hints: $\cos(t)$, $\sin(t)$

(a)
$$f'(x) = 4f(x), f(0) = 7$$
 (b) $g'(x) = -3g(x), g(0) = 12$
 $f(x) =$
 $g(x) =$

 (c) $\frac{dy}{dx} = 4y, \quad y(0) = 7$
 (d) $\frac{dy}{dt} = 0.5y, \quad y(0) = 2.2$
 $y(x) =$
 $y(t) =$

 (e) $\frac{dP}{dt} = 0.02P, P(0) = 6$
 (f) $y' = -0.01y, \quad y(0) = 200$
 $P(t) =$
 $y =$

 (Usually, the independent variable t or x makes the most sense in the solution.)

 (g) $\frac{d^2y}{dx^2} = 16y, \quad y(0) = 7$
 (h) $y'' = 25y, \quad y(0) = A$
 $y(x) =$
 $y(t) =$

 Hint: Compare with part (c).
 Is $y = Ae^{-5t}$ also a solution to the IVP?

 (i) $y'' = -25y, \quad y(0) = A + B$
 Is $y = Ae^{-5t}$ a solution

Is $y = Ae^{5t} + Be^{-5t}$ a solution to the initial value problem y'' = 25y, y(0) = A + B?

(j) You already know why $y = e^{0.5t} + 1.2$ is <u>not</u> a solution to the initial value problem in part (d). Explain why $y = 0.25t^2 + 2.2$ is <u>not</u> a solution to the initial value problem in part (d). Explain why $0.25y^2 + 2.2$ is <u>not</u> a solution to the initial value problem in part (d). For the same reasons, $y = -0.005t^2 + 200$ and $-0.005y^2 + 200$ are not solutions to the initial value problem in part (f)!