Calculus I: The Most Ubiquitous Initial Value Problems

1) (a) Write a function $f(x)$ for which $f^{\prime}(x)=f(x)$: $f(x)=$
(b) For your function $f(x)$ from part (a), let $g(x)=3 f(x): g(x)=$

Compute $g^{\prime}(x): g^{\prime}(x)=$
Does $g(x)$ have the property that $g^{\prime}(x)=g(x)$?
Compute $g(0): g(0)=$
(c) Write a function $h(x)$ for which $h^{\prime}(x)=h(x)$ and $h(0)=7: h(x)=$

Explain why $h(x)=e^{x}+6$ is not a solution to this problem.
(d) Write a function $y(x)$ for which $y^{\prime}(x)=y(x)$ and $y(0)=y_{0}: y(x)=$
2) (a) Write a function $f(x)$ for which $f^{\prime}(x)=4 f(x): f(x)=$
(b) For your function $f(x)$ from part (a), let $g(x)=3 f(x): g(x)=$

Compute $g^{\prime}(x): g^{\prime}(x)=$

Does $g(x)$ have the property that $g^{\prime}(x)=4 g(x)$?

Compute $g(0): g(0)=$
(c) Write a function $h(x)$ for which $h^{\prime}(x)=4 h(x)$ and $h(0)=7: h(x)=$

Explain why $h(x)=e^{4 x}+6$ is not a solution to this problem.
(d) Write a function $y(x)$ for which $y^{\prime}(x)=k y(x)$ and $y(0)=y_{0}$, where k is any constant real number: $y(x)=$

Together, the differential equation $y^{\prime}(x)=k y(x)$ and the initial value $y(0)=y_{0}$ from Problem 2, part (d), form an initial value problem (IVP). A solution to an IVP is a function $y(x)$ that satisfies the given differential equation and has the given initial value. So, for instance, the function $h(x)$ you wrote in Problem 2, part (c), is a solution to the initial value problem that consists of the differential equation $h^{\prime}(x)=4 h(x)$ and the initial value $h(0)=7$.
3) Solve the following initial value problems.
(a) $f^{\prime}(x)=4 f(x), f(0)=7$
(b) $\quad g^{\prime}(x)=-3 g(x), g(0)=12$
$f(x)=$
$g(x)=$
(c) $\frac{d y}{d x}=4 y, \quad y(0)=7$
(d) $\frac{d y}{d t}=0.5 y, \quad y(0)=2.2$
$y(x)=$
$y(t)=$
(e) $\frac{d P}{d t}=0.02 P, P(0)=6$
(f) $\quad y^{\prime}=-0.01 y, \quad y(0)=200$
$P(t)=$
$y=$
(Usually, the independent variable t or x makes the most sense in the solution.)
(g) $\frac{d^{2} y}{d x^{2}}=16 y, \quad y(0)=7$
$y(x)=$
Hint: Compare with part (c).
(h) $y^{\prime \prime}=25 y, \quad y(0)=A$
$y(t)=$
Is $y=A e^{-5 t}$ also a solution to the IVP?
(i) $y^{\prime \prime}=-25 y, \quad y(0)=A+B$
$y(t)=$
Is $y=A e^{5 t}+B e^{-5 t}$ a solution to the initial value problem $y^{\prime \prime}=25 y, y(0)=A+B$?

Hints: $\cos (t), \sin (t)$
(j) You already know why $y=e^{0.5 t}+1.2$ is not a solution to the initial value problem in part (d). Explain why $y=0.25 t^{2}+2.2$ is not a solution to the initial value problem in part (d). Explain why $0.25 y^{2}+2.2$ is not a solution to the initial value problem in part (d). For the same reasons, $y=-0.005 t^{2}+200$ and $-0.005 y^{2}+200$ are not solutions to the initial value problem in part (f)!

