Subgroups

1. Let G be an Abelian group and let H_{2} be the subset of G given by

$$
H_{2}=\left\{x \in G \mid x^{2}=e\right\} .
$$

(a) For $G=U(20), H_{2}=\{$ \qquad \} (list the elements).
(b) Prove that H_{2} is a subgroup of G.

Closure: Let $a, b \in H_{2}$.

Identity: $e \in H_{2}$ because:

Inverses: Let $a \in H_{2}$.
2. Let G be a group (not necessarily Abelian), let $a \in G$, and let $C(a)$ be the subset of G given by $C(a)=\{g \in G \mid g a=a g\}$.
(a) Use the group table for D_{4} to list the elements of $C(V)$ for $G=D_{4}$. Explain how you know that each element you list is in $C(V)$.
\qquad
(b) Prove that $C(a)$ is a subgroup of G. You may let $H=C(a)$, if you like.

Closure: Let $x, y \in C(a)$.

Identity: $e \in C(a)$ because:

Inverses: Let $x \in C(a)$.

