Subgroups

1. Let *G* be an Abelian group and let H_2 be the subset of G given by $H_2 = \{ x \in G \mid x^2 = e \}.$

(a) For G = U(20), $H_2 = \{$ _____} (list the elements).

(b) Prove that H_2 is a subgroup of G.

Closure: Let $a, b \in H_2$.

Identity: $e \in H_2$ because:

Inverses: Let $a \in H_2$.

- 2. Let *G* be a group (not necessarily Abelian), let $a \in G$, and let C(a) be the subset of *G* given by $C(a) = \{ g \in G | ga = ag \}$.
 - (a) Use the group table for D_4 to list the elements of C(V) for $G = D_4$. Explain how you know that each element you list is in C(V).

 $C(V) = \{ _ _ \}$

(b) Prove that C(a) is a subgroup of G. You may let H = C(a), if you like.

Closure: Let $x, y \in C(a)$.

Identity: $e \in C(a)$ because:

Inverses: Let $x \in C(a)$.