Proofs of Theorems about Groups

Prove the following theorems by filling in the blanks and the empty spaces following implies (\rightarrow) and equals (=) signs.

1. Theorem. Let G be a group and let $a, b \in G$. If $(ab)^2 = a^2b^2$, then ab = ba.

Proof:
$$(ab)^2 = a^2b^2$$

2. **Theorem.** Let *G* be a group and let $a, b \in G$. Then $(a^{-1}ba)^n = a^{-1}b^n a$ for every positive integer $n, n \ge 2$.

Proof by mathematical induction:

Base step: For
$$n = 2$$
, $(a^{-1}ba)^2 = _ = a^{-1}b^2a$.
Inductive step: Inductive hypothesis: Assume ______.
Then $(a^{-1}ba)^{n+1}$
= _______(by the inductive hypothesis)
= $a^{-1}b^{n+1}a$.

By the Principle of Mathematical Induction, we have $(a^{-1}ba)^n = a^{-1}b^n a$ for every positive integer *n*, $n \ge 2$.

3. **Theorem.** Let *G* be an Abelian group and let $a, b \in G$. Then $(ab)^n = a^n b^n$ for every positive integer $n, n \ge 2$.

Proof by mathematical induction:

Base step: For n = 2,

Inductive step: Inductive hypothesis: Assume ______.

Then $(ab)^{n+1}$

=

=

=

(by the inductive hypothesis)

 $=a^{n+1}b^{n+1}$. (Be sure to point out where you use that the group G is Abelian.)

By the Principle of Mathematical Induction, we have $(ab)^n = a^n b^n$ for every positive integer *n*, $n \ge 2$.

4. Let G be a group and let a, b, $c \in G$. Then $(ab^{-1}c)^{-1} =$

because $(ab^{-1}c)$ = *e* and _____($ab^{-1}c$) = *e*.

5. **Theorem.** Let G be a group and let $a_1, a_2, \ldots, a_n \in G$, where n is a positive

integer, $n \ge 2$. Then $(a_1 a_2 \cdots a_n)^{-1} =$ ______.

Proof by mathematical induction: